
45292

TETRIX® Tele-Op Control Module Technical Guide
For use with SONY PS4 DUALSHOCK 4 gaming controller

Content advising by Paul Uttley.
SolidWorks® Composer™ and KeyShot® renderings by Tim Lankford, Brian Eckelberry, and Jason Redd.
Desktop publishing by Todd McGeorge.
©2018 Pitsco, Inc., 915 E. Jefferson, Pittsburg, KS 66762

All rights reserved. This product and related documentation are protected by copyright and are distributed under
licenses restricting their use, copying, and distribution. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Pitsco, Inc.

All other product names mentioned herein might be the trademarks of their respective owners.

A downloadable PDF of the most recent version of this guide can be found at
Pitsco.com/TETRIX-Tele-Op-Control-Module#resources.

V1.0
01/19

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
(1) this device may not cause harmful interference, and (2) this device must accept any interference
received, including interference that may cause undesired operation.

Bluetooth Dongle
It’s important to know that not all Bluetooth dongles are created equal. For multiple Bluetooth devices to operate
simultaneously within radio range of each other, each dongle must have a unique identifier, which is called a MAC
address. Bluetooth guidelines state that manufacturers of dongles are supposed to follow this rule. However, some
producers of cheap dongles don’t always do this. Instead, they mass produce dongles, all with the same identifier. The
Bluetooth dongle that comes with each TETRIX Tele-Op module has been tested to each have a unique identifier. It is
recommended that you always use the dongle that ships with the product. Additional replacement dongles are available
from Pitsco.

*For use with PULSE controller

TETRIX® Tele-Op Control Module Technical Guide
General Description
The TETRIX® Tele-Op Control Module is a peripheral add-on to the programmable TETRIX PRIZM® or PULSE™ Robotics
Controllers. It enables tele-op control of a TETRIX robot using a USB/wireless input device such as a gaming controller.
Note that the Tele-Op module ships with firmware that supports a SONY PS4 DUALSHOCK 4 gaming controller by
default. The Tele-Op module connects to the PRIZM expansion port or PULSE I2C port to enable the interface of a
Bluetooth wireless device, such as a joystick gaming controller, to the TETRIX control system. The module communicates
using an I2C protocol for sending and receiving data. The wireless communication is implemented using a Bluetooth
dongle plugged into the Tele-Op module’s USB host port. A PDF of this guide is available at Pitsco.com.

While use of the Tele-Op module with the PULSE controller is not currently supported by the visual programming
software TETRIX Ardublockly, please note that the PULSE controller is supported by the Arduino Software (IDE), which
includes example sketches.

What’s Included
•	 TETRIX Tele-Op Control Module

•	 TETRIX MAX Powerpole Extension Cable

•	 Daisy chain data cable

•	 Bluetooth dongle

•	 Four-pin I2C port extension cable*

•	 Female to female three-pin battery connection cable*

Connections
The Tele-Op module connects to the PRIZM battery power expansion terminals using the included Powerpole extension
cable. The module’s data port connects to the PRIZM expansion port using the included data cable. If your system
includes any additional TETRIX DC motor or servo motor expansion modules, the Tele-Op module’s data port and power
connection can be plugged into the last available data and power ports in the system daisy chain. A USB Bluetooth
dongle should be preinstalled in the module’s USB host port. If it is not, insert the dongle fully into the USB host port.
Secure the module to your TETRIX structure using screws and nuts including in a TETRIX building set. For best operation,
place the module as far away as possible from DC motors or servos to avoid electrical noise interference with the
Bluetooth signal.

Important Safety Information
Caution: Use only a TETRIX battery pack that is equipped with an in-line safety fuse. Failure to do so could result in
damage or injury. Connect the TETRIX battery pack to either the top or bottom red/black power inlet row at the battery
connection port. Do not connect two battery packs to the PRIZM controller.

Attaching the Tele-Op Module
When mounting the Tele-Op module on your robot, be sure to place it away from DC or servo motors as they tend to
generate frequency noise that could interfere with Bluetooth connectivity. Also, be sure that Tele-Op module is not
surrounded by too many metal parts, which could shield the Bluetooth signal.

Battery connection ports
Power is supplied to the controller from
either the 12-volt PRIZM or six-volt PULSE
battery outlet port using the included
Powerpole battery conversion cables.

USB port
Connection for firmware update

USB host port

I2C data port
Connect to the expansion port
using the included data cable.

PULSE
PRIZM

Bluetooth dongle

SONY PS4 Gaming Controller Diagram

SHARE OPTIONS
R2, R2TL2, L2T

R1L1

TRIANGLEUP

SQUARERIGHT

CIRCLELEFT

CROSSDOWN

TOUCH

POWER

LX, LY, L3 (push) RX, RY, R3 (push)

Supported Software and Additional Resources
The TETRIX Tele-Op Control Module is designed to be easily interfaced to the TETRIX PRIZM Robotics Controllers utilizing
an Arduino programming library. The library is a simplified set of functions enabling easy and intuitive integration of
Tele-Op control operation into PRIZM coding applications created within the Arduino Software (IDE). It is assumed that
the Arduino Software (IDE) has already been installed, along with the programming libraries for the PRIZM controller.

•	 Download the Tele-Op library at Pitsco.com/TETRIX-Tele-Op-Control-Module#downloads. The library contains
several coding examples that demonstrate each Tele-Op module library function as well as application to PRIZM
coding techniques. The code examples provide the easiest way to get up and going with the Tele-Op module.
Other devices might be added and supported by the Tele-Op module in the future. Activities that demonstrate
functionality with a PS4 gaming controller are available at the website.

•	 Visit Pitsco.com/TETRIX-Tele-Op-Control-Module#resources to view the latest activities, code examples,
firmware updates, and list of devices supported by the Tele-Op module.

•	 Visit Pitsco.com/TETRIX-PRIZM-Robotics-Controller#downloads to download the latest software libraries for
the TETRIX PRIZM Robotics Controller if you don’t have them already installed.

Installing the Tele-Op Module Arduino Programming Library
The TETRIX Tele-Op Arduino Library is distributed as a .zip file available for download at
Pitsco.com/TETRIX-Tele-Op-Control-Module#downloads. After it’s downloaded, you can use the Add .ZIP Library
option found under the Sketch menu tab in the Arduino Software (IDE) menu bar. Additional instructions on how to
install a library into the Arduino Software (IDE) can be found by visiting the Arduino website at www.arduino.cc. For
other detailed tips on how to install a library, you can reference the library installation section in the full TETRIX PRIZM
Programming Guide that is available for download on the Pitsco website.

After the library is installed, close and restart the Arduino Software (IDE). After it’s restarted, you can access the coding
examples by selecting Examples under the File menu and scrolling down to the TETRIX_Tele-Op library.

Pairing the SONY PS4 DUALSHOCK 4 Gaming Controller
To begin using a PS4 controller with the Tele-Op module, you must pair the PS4 controller to the Bluetooth dongle
connected to the Tele-Op module. To do this:

1.	 Be sure the Tele-Op module’s Bluetooth dongle is inserted into the USB host port and the PS4 controller’s
battery is fully charged.

2.	 Power up the module. After three or four seconds, the green LED on the Tele-Op module should be blinking
rapidly.

3.	 Press and hold down the Share and Power buttons simultaneously on the PS4 controller until the controller’s
light bar begins to blink white rapidly. This indicates that the PS4 controller is now in discovery mode. Release
the buttons.

4.	 Press the Mode button on the Tele-Op module. The red LED will come on, indicating that the Tele-Op module
is attempting to pair with the PS4 controller that is in discovery mode. When they have successfully paired, the
Tele-Op module’s red LED will turn off and the green LED will be on and solid (not blinking). In addition, the
PS4’s light bar will change to solid green.

Note: You only need to pair the devices once. After they are paired, simply power up the Tele-Op module and then turn
on your PS4 controller by pressing the Power button. The PS4 controller’s light bar will turn white and blink slowly while
it is linking; it will switch to solid green color as soon as they’re linked. It might take up to 10 seconds to link.

Tele-Op Module Library for SONY PS4 DUALSHOCK 4 Gaming Controller
Following is a quick reference of each library function supported by the TETRIX Tele-Op Arduino Library. This command
set is to be used in conjunction with a wireless SONY PS4 DUALSHOCK 4 gaming controller. See the diagram earlier in
this guide for a map of the PS4 gaming controller buttons and joysticks.

ps4.getPS4();
ps4.Connected;
ps4.inRange;
ps4.resetTeleOp();

ps4.Button(L1);
ps4.Button(L2);
ps4.Button(L3);
ps4.Button(R1);
ps4.Button(R2);
ps4.Button(R3);
ps4.Button(L2T);
ps4.Button(R2T);
ps4.Button(UP);
ps4.Button(DOWN);
ps4.Button(RIGHT);
ps4.Button(LEFT);
ps4.Button(TRIANGLE);
ps4.Button(CROSS);
ps4.Button(CIRCLE);
ps4.Button(SQUARE);
ps4.Button(SHARE);
ps4.Button(OPTIONS);
ps4.Button(POWER);
ps4.Button(TOUCH);

ps4.buttons_1;
ps4.buttons_2;

ps4.Touchpad(TOUCHX);
ps4.Touchpad(TOUCHY);

ps4.Angle(PITCH);
ps4.Angle(ROLL);

ps4.setLED(RED);
ps4.setLED(BLUE);
ps4.setLED(YELLOW);
ps4.setLED(GREEN);

ps4.setRumble(STOP);
ps4.setRumble(SLOW);
ps4.setRumble(FAST);

ps4.setDeadZone(stick, amount);

ps4.Motor(LX);
ps4.Motor(LY);
ps4.Motor(RX);
ps4.Motor(RY);
ps4.Motor(L2T);
ps4.Motor(R2T);
ps4.Motor(PITCH);
ps4.Motor(ROLL);
ps4.Servo(LX);
ps4.Servo(LY);
ps4.Servo(RX);
ps4.Servo(RY);
ps4.Servo(L2T);
ps4.Servo(R2T);
ps4.Servo(PITCH);
ps4.Servo(ROLL);

ps4.Stick(LX);
ps4.Stick(LY);
ps4.Stick(RX);
ps4.Stick(RY);

TETRIX Tele-Op Control Module Arduino Library Functions Chart
for the SONY DUALSHOCK 4 Gaming Controller
The Tele-Op module ships with firmware for the PS4 gaming controller installed. Please be sure to download and install
the latest version of the Tele-Op Arduino libraries at Pitsco.com/TETRIX-Tele-Op-Control-Module#downloads for the
most up-to-date programming features and functionality.

Description Function Coding Example

Get PS4 Controller Data
Reads the status of all analog and
digital buttons and joysticks from a
PS4 game controller connected to the
Tele-Op module.

Be sure to call this function as
frequently as possible in your Arduino
code. Each time it is called, the data
from the PS4 gaming controller is
refreshed.

ps4.getPS4();

Data Returned: None

void loop() {
 ps4.getPS4();
}

Check Connection
Checks to see if the PS4 gaming
controller has been successfully
connected to the Tele-Op module.

ps4.Connected;

Data Returned:

0 = PS4 has disconnected
1 = PS4 has connected

void loop() {
 ps4.getPS4();
 if (ps4.Connected) {
 // do this if connected
 } else {
 // do this if not connected
 }
}

Check Range
Checks to see if the PS4 gaming
controller Bluetooth signal is in range
of the Tele-Op module.

ps4.inRange;

Data Returned:

0 = PS4 is out of range
1 = PS4 is in range

void loop() {
 ps4.getPS4();
 if (ps4.inRange) {
 // do this if in range
 } else {
 // do this if not in range
 }
}

Reset Tele-Op Module
Force resets the module; equivalent to
physically pressing the red Stop/Reset
button.

ps4.resetTeleOp();

Data Returned: None

ps4.resetTeleOp();

Note: Call this function once in code
if there is a need to reset the Tele-Op
module.

Read Digital Button Status
Returns the status of a PS4 controller
digital button.

Digital button function parameters
are:
L1, L2, L3
R1, R2, R3
UP, DOWN, RIGHT, LEFT
TRIANGLE, CROSS, CIRCLE, SQUARE
SHARE, OPTIONS, POWER, TOUCH

ps4.Button(L1);

Data Returned:

0 = Button not pressed
1 = Button pressed

void loop() {
 ps4.getPS4();
 if (ps4.Button(L1)) {
 // do this if pressed
 } else {
 // do this if not pressed
 }
}

Read Analog Button Status
Returns the status of a PS4 controller
analog trigger button.

Analog buttons are the L2 and R2
trigger buttons.

Analog button parameters are:
L2T, R2T

ps4.Button(L2T);
or
ps4.Button(R2T);

Data Returned: Integer

Data Range: 0-255

void loop() {
 ps4.getPS4();
 int x = ps4.Button(L2T);
}

The analog value (0-255) of the L2
trigger button is stored in variable x.

Description Function Coding Example

Return Button Group Byte Value
Returns the binary byte value of a PS4
button group.

The Tele-Op module can return
the digital status of two button
groups represented as a binary byte.
The digital status of each button
in the group is indicated by its
corresponding binary digit position in
the byte.

Button Group 1 (buttons_1):
L1, L2, R1, R2, CROSS, CIRCLE,
SQUARE, TRIANGE

Button Group 2 (buttons_2):
L3, R3, UP, DOWN, RIGHT, LEFT, SHARE,
OPTIONS

ps4.buttons_1;
or
ps4.buttons_2;

Data Returned: Byte

void loop() {
 ps4.getPS4();
 byte group1 = ps4.buttons_1;
 byte group2 = ps4.buttons_2;
}

group1 = the byte value of the
buttons_1 group

group2 = the byte value of the
buttons_2 group

Tip: Use the Serial Monitor statement
with the BIN format parameter to
see the binary value of each button
group’s status.

Serial.println(ps4.buttons_1, BIN);
or
Serial.println(ps4.buttons_2, BIN);

Read Touch Pad
Returns the x- or y-coordinate of
the finger position touched and
moved across the surface of the PS4
controller touch pad.

ps4.Touchpad(TOUCHX);
or
ps4.Touchpad(TOUCHY);

Data Returned: Integer

void loop() {
 ps4.getPS4();
 int x = ps4.Touchpad(TOUCHX);
 int y = ps4.Touchpad(TOUCHY);
}

x = the x-coordinate of PS4 touch pad
y = the y-coordinate of PS4 touch pad

Read Position of Data Mapped to
Motor
Returns the position of a PS4
controller’s left and right joystick axis,
analog trigger buttons, or pitch and
roll gyro data mapped to a motor
power and direction range of -100 to
100.

Motor function mapping parameters
are:
LX, LY, RX, RY, L2T, R2T, PITCH, ROLL

ps4.Motor(LX);

Data Returned: Integer

Range: -100 to 100

void loop() {
 ps4.getPS4();
 int x = ps4.Motor(LX);
}

x = the position of the left x-axis
joystick mapped to a motor power and
direction range of -100 to 100

Tip: Replace LX with the parameter
mapped to a motor power and
direction range that you wish to
return.

Read Position of Data Mapped to
Servo
Returns the position of a PS4
controller’s left and right joystick
axis, analog trigger buttons, or pitch
and roll gyro data mapped to a servo
motor position range of 0 to 180
degrees.

Servo function mapping parameters
are:
LX, LY, RX, RY, L2T, R2T, PITCH, ROLL

ps4.Servo(RY);

Data Returned: Integer

Range: 0-180

void loop() {
 ps4.getPS4();
 int y = ps4.Servo(RY);
}

y = the position of the right y-axis
joystick mapped to a servo motor
position range of 0 to 180 degrees

Tip: Replace RY with the parameter
mapped to a servo motor position
range that you wish to return.

7 6 5 4 3 2 1 0Bits

Byte

Group 1:

Bit 0: L2
Bit 1: L1
Bit 2: R2
Bit 3: R1
Bit 4: CROSS
Bit 5: CIRCLE
Bit 6: SQUARE
Bit 7: TRIANGLE

Group 2:

Bit 0: UP
Bit 1: DOWN
Bit 2: RIGHT
Bit 3: LEFT
Bit 4: R3
Bit 5: L3
Bit 6: SHARE
Bit 7: OPTIONS

Description Function Coding Example

Read Joystick Position
Returns the raw analog positional
value of a PS4 joystick.

By default, the range returned by this
function is from 0 to 255 with 128
being the center stick position.

The stick function data parameters:
LX = Left x-axis joystick
LY = Left y-axis joystick
RX = Right x-axis joystick
RY = Right y-axis joystick

ps4.Stick(LY);

Data Returned: Integer

Range: 0-255

void loop() {
 ps4.getPS4();
 int y = ps4.Stick(LY);
}

y = the raw analog data value of the
right y-axis joystick

Read Angle
Returns the pitch or roll angle
of the PS4 controller’s internal
accelerometer.

The angle range returned is from 0 to
360 degrees. The controller will return
180 when controller is held in a flat
and level position. This represents the
neutral, or center, position.

ps4.Angle(PITCH);
or
ps4.Angle(ROLL);

Data Returned: Integer

Range: 0-360

void loop() {
 ps4.getPS4();
 int P = ps4.Angle(PITCH);
}

P = the pitch angle of the PS4 controller
in degrees

Set LED State
Sets the on, off, and color state of a
PS4 controller’s light bar.

LED data parameters are:
RED, BLUE, YELLOW, GREEN, OFF

ps4.setLED(RED);

Data Returned: None

void loop() {
 ps4.getPS4();
 ps4.setLED(RED);
}

Set the PS4 controller LED color to RED.

Set Rumble Speed
Sets the on, off, and speed state of
a PS4 controller’s internal vibration
rumble motors.

Rumble motor data parameters are:
STOP, SLOW, FAST

ps4.setRumble(SLOW);

Data Returned: None

void loop() {
 ps4.getPS4();
 ps4.setRumble(SLOW);
}

Set the PS4 controller rumble motor to
SLOW (low frequency vibration) speed.

Set Dead Zone
Sets the range of PS4 controller
joystick axis dead zone.

This function is used to create a
neutral area, or dead zone, around the
center stick position of each joystick’s
x- and y-axis. Sometimes when you
let go of the left and right joysticks
on a gaming controller, they don’t
always spring back to exact center.
The dead zone is a range you can
set to be neutral about the center of
the joystick’s XY-axis. If the joystick is
within the dead zone range, it is set
to be at center. This parameter is used
by the ps4.Motor() and ps4.Servo()
functions so that when the joystick
is within the dead zone, the value
returned by this function is always a
zero (motor stop) for DC motors and
90 (center position) for servos.

ps4.setDeadZone(LEFT, 10);

Data Returned: None

void loop() {
 ps4.setDeadZone(LEFT, 10);
 ps4.setDeadZone(RIGHT, 10);
}

Set the LEFT and RIGHT joystick x- and
y-axis dead zone range to +/- 10.

Power: Use with PRIZM: 12 volts using the TERIX MAX NiMH fuse-protected battery pack
Use with PULSE: 6 volts using the TETRIX PRIZM 5-cell NiMH battery pack

LED Indicators:
Blue: Power on
Red: Mode indicator (typically used for Bluetooth pairing mode)
Green: Module status; blinking = Bluetooth dongle detected; solid = Bluetooth connected

Modular data port: Data connection to PRIZM controller

I2C data port: 4-pin data port for connection to PULSE controller

USB programming port: USB port for firmware updates

Battery connection port: Powerpole type; red/black connectors for connection to PRIZM 12-volt system
3-pin pin style for connection to PULSE 6-volt system

Buttons:
Reset controller: Red button
Mode function: Black button; used to pair the Tele-Op module with a Bluetooth device;
could also be used as other function depending on device being used

USB host port:
Used for connecting the Bluetooth dongle included with the module. The Bluetooth dongle
must support V4.0 + EDR V1.1/2.0/3.0. It is recommended to only use the dongle provided
with the Tele-Op module.

General Hardware Specifications

Call Toll-Free
800•835•0686

Visit Us Online at
Pitsco.com

TETRIX® Tele-Op Control
Module Technical Guide

For use with SONY PS4 DUALSHOCK 4 gaming controller

