
English

Petoi Bittle User Manuals

Rongzhong Li

Under Construction

You may find some complementary materials at: https://www.yuque.com/tinkergen-help-en/bittle

Getting started

To keep these instructions simple to use, I’m focusing on the assembling rather than an in-depth
explanation.

If you have specific questions on “why” rather than “how”, please post on our forum at
 or write to .https://www.petoi.com/forum support@petoi.com

The crowdfunding campaign is active on Indiegogo: . Our social media
(Instagram/Twitter/Facebook/GitHub) account is @PetoiCamp. Share your build by tagging #bittle #petoi
#opencat so that we can repost for you!

igg.me/at/bittle

https://www.yuque.com/tinkergen-help-en/bittle
https://www.petoi.com/forum
mailto:support@petoi.com
https://www.igg.me/at/bittle

Last Updated: 08/30/2021

1 ♂ Tool and Preparation

"A beard well lathered is half shaved."

1.1. Preparation

Prepare a clean desk and some small boxes to unzip the package. Take a picture of the kit contents in case
you lost something later.

It’s better to work in a room without carpet or textured mosaic. Little screws and springs can
magically disappear if dropped onto the ground.

1.2. Tools and accessories

Tool Notes

Flat and Phillips screwdrivers For M2 (diameter = 2mm) screws

Computer with Arduino IDE Install the latest Arduino IDE

USB charging port 5V 1A output should be enough

Required

Tool Note

Soldering iron w/ accessories For modifying the PCB if you are a hacker

Optional

https://www.arduino.cc/en/Main/Software

3D printer w/ accessories Add your special design
Arduino/Raspberry Pi kit Add more gadgets to Bittle

Multimeter Test and debug

Oscilloscope Test and debug

Hot glue/super glue Avoid using them. Bittle is designed to be

2 Open the Box

"life is like a box of Bittle."

Unassembled Bittle Kit and Pre-assembled Bittle

2.1. Pre-assembled Bittle
If you received the pre-assembled Bittle, you need to insert the neck into the body and bend the knees to
natural angles. Drag the curly wire from the knee side to the shoulder side to avoid squeezing when the
knee joints rotate.

Long press the battery's button for 2~3 seconds to power on/off. Unplug the insulation sheet of the
infrared remote's battery, then you can . The robot will keep pausing its movements
with beeping sounds when the battery is low. Then you need to charge the battery with a 5V micro-USB
cable. Considering safty, the battery won't supply power during charging.

control Bittle to move

The pre-assembled Bittle is only coarse-tuned. You still need to to
's sensors and fine-tune its joints for the best performance.

setup Arduino IDE calibrate
Bittle

Friction plays an important role in dynamic balancing during walking. Though the silicone toe
covers (socks) can improve grip, they will also amplify the differences of the unpredictable surface
of your test environment. So for regular use, we recommend running Bittle without the socks,
unless you can tune the gait or need friction to perform some specific tasks.

https://bittle.petoi.com/7-play-with-bittle
https://bittle.petoi.com/4-configuration
https://bittle.petoi.com/6-calibration

2.2. Unassembled Bittle Kit

If you ordered the unassembled Bittle kit, you will have to solve a challenging and fun puzzle. You will learn
more about robotics after understanding the design logic behind Bittle. Please move to the following
chapters for details.

3 Assemble the Frame

"The whole is more than the sum of its parts."

3.1. Start with the Unassembled Kit

You can take a glance at this assembling animation for Bittle.

Assembling Animation for Bittle - Assembling Animation for Bittle - the World's First Realistic Palm-sized Robot Dog for the World's First Realistic Palm-sized Robot Dog for ……

Here's a more detailed hands-on tutorial on building Bittle from the kit.

How to Make BittleHow to Make Bittle

https://www.youtube.com/watch?v=G2RDNbek7CQ
https://www.youtube.com/watch?v=oJ2Y9hZgCEY

3.2. Step-by-step Instruction (under construction)

You can finish the following parts then put them together in later chapters.

Neck

Body

Upper leg

Lower leg

Head

Shoulder servo

3.2.1. Neck

Materials：

Neck x 1

Servo arm x 1

M2x8 sharp-end self-tapping screws x 2

Put the servo arm in the neck part like the figure below. The teeth of the servo arm should face upward.

Screw two M2x8 self-tapping screws beside both sides of the servo arm. Don't over tighten the screws.

Finished:

3.2.2. Body (pre-assembled in our package)

Materials:

Assembled neck x 1

Chasis x 1

Front and back plate x 2

Side shoulder x 2

Recognize the front and back side of the chassis. The location of the two large holes along the center track
makes a difference. In our standard configuration, we define the holes to be shifted towards the tail. You can
also find a small mark "A1" in the front of the chassis.

Push the back tip of the assembled neck into the slot of the chassis. Then press down the front hook until
you hear a snap sound.

I designed the neck as a weak chain to disengage during a collision. Otherwise, the shock will be
passed on to the servo or body frame and cause unrepairable damage.

Insert the chassis into one of the side shoulders.

Insert the front or back plate into the side shoulder. There are three tenons on each side of the plate. Insert
the two front tenons as one group for better alignment.

Insert both the front and back plates.

Plug the other side shoulder to complete the body. Again pay attention to the alignment of the tenons of the
front and back plates.

Finished:

3.2.3. Upper leg

It's a little hard to explain well with words. Please refer to the assembling . It requires
more skill than force. There's a discussing installing springs with various tools.

instruction video at 3:23
forum post

3.2.4. Lower leg

Materials:

P1S servo with long cable x 4

https://youtu.be/oJ2Y9hZgCEY?t=203
https://www.petoi.com/forum/basic-assembly-and-setup/just-got-my-bittle-kit-can-t-install-springs

Lower leg piece x4
M2x8 self-tapping screw x 8

Assemble the right leg. Insert the servo into the window. Watch the tutorial video to see the correct direction
to fold the wire. The notch on the internal edge is designed to let the wire go through. Use two M2x8 screws
to fix the servo onto the lower leg.

The left leg is opposite to the right leg. However, the front and back legs are identical. So you should make
two pairs of legs with opposite configuration.

3.2.5. Head

Materials:

P1S servo with short cable x 1

Chin x 1

Skull x 1

M2x8 self-tapping screw x 2

Put the servo in the chin as shown in the figure. Pay attention to the direction of the servo's wire. After that,
install two M2x8 self-tapping screws.

Insert the skull into the chin so that it can rotate and bite on small gadgets. I recommend you apply some
lubricant to the contact points between the skull and chin.

3.2.6. Shoulder servo

Materials:

P1S servo with short cable x 4

M2x8 self-tapping screws x 8

Head (assembled)

Body (assembled)

Lower leg (assembled) x 4

Put the head, body, servos, and lower legs like the figure below. Insert the short servo wires through the
servo slots on the side shoulders. Pay attention to the direction of the servos carefully and place them in the
correct configuration.

Side view:

Top view:

You also need to insert the wire of the head servo into the body.
Put the short wire servos into the side shoulders after confirming all the components' directions. Pay
attention to the directions of the shoulder servos’ output shaft. The long wires of the lower leg servos should
be inserted into the opening between the shoulder servo and the shoulder window. Use two M2x8 self-
tapping screws to fix each should servo.

4 ⌨ Board Configuration

"Who loves fried chips?"

4.1. NyBoard

4.1.1. Read the user manual

Find the version info on NyBoard. Read the user manual for .NyBoard V1_0

https://docs.petoi.com/nyboard/nyboard-v1_0

NyBoard V1_0 Top side

NyBoard V1_0 Bottom side

Wrong operations may damage your NyBoard!

4.1.2. Dial the slide switch to Arduino.

The slide switch changes the master of I2C devices (gyro/accelerometer, servo driver, external EEPROM).

On default “Arduino”, NyBoard uses the onboard ATmega328P as the master chip; On “Pi”, NyBoard uses
external chips connected through the I2C ports (SDA, SCL) as the master chip.

Sometimes if you cannot go through the bootup stage, maybe you have accidentally dialed the
switch to "Pi".

NyBoard powers the metal-geared servos directly with the 7.2V battery. It's 8.4V when fully charged. You
CANNOT use NyBoard to drive your own plastic geared servos directly.

4.2. Downloads and installations

You will need the newest Arduino IDE to set up the environment. Older versions tend to compile
larger hex files that may exceed the memory limit.

If you have previously added other libraries and see an error message "XXX library is already installed", I
would recommend you delete them first (instruction:

). Due to different configurations of your Arduino IDE
installation, if you see any error messages regarding missing libraries during later compiling, just google
and install them to your IDE.

https://stackoverflow.com/questions/16752806/how-do-
i-remove-a-library-from-the-arduino-environment

4.2.1. Install through the library manager

Go to the library manager of Arduino IDE (instruction:), search
and install

https://www.arduino.cc/en/Guide/Libraries

Adafruit PWM Servo Driver

QList (optional)

If you downloaded the newest code from GitHub after Sep 19, 2021, you can skip the
following library.

OpenCat

IRremote

The IRremote library was updated recently. And for some reason, they even changed the encoding
of the buttons. You MUST roll back the library's version to 2.6.1 in the library manager.

To save programming space, you MUST comment out the unused decoder in IRremote.h. It will
save about 10% flash!

Find Documents/Arduino/libraries/IRremote/src/IRremote.h and set unused decoders to 0.
That is, only DECODE_NEC and DECODE_HASH are set to 1, and others are set to 0.

#define DECODE_RC5 01

#define SEND_RC5 02

3

https://stackoverflow.com/questions/16752806/how-do-i-remove-a-library-from-the-arduino-environment
https://www.arduino.cc/en/Guide/Libraries
https://github.com/PetoiCamp/OpenCat

3

#define DECODE_RC6 04

#define SEND_RC6 05

6

#define DECODE_NEC 17

#define SEND_NEC 08

9

#define DECODE_SONY 010

#define SEND_SONY 011

12

...13

set zeros all the way down the list 14

...15

16

#define DECODE_HASH 1 // special decoder for all protocols17

4.2.2. Install by adding .ZIP library

Go to ,
download the zip file, and unzip. You can also git clone the whole repository.

jrowberg/i2cdevlib: I2C device library collection for AVR/Arduino or other C++-based MCUs

Use Add .ZIP Library to find Arduino/MPU6050/ and Arduino/I2Cdev/. Click on the folders and add them
one by one. They don’t have to be .ZIP files.

https://github.com/jrowberg/i2cdevlib

4.2.3. Add NyBoard support to Arduino IDE

With NyBoard V1_*, you can simply choose Arduino Uno.

4.2.4. Burn the bootloader (no need for normal use)

Only if the bootloader of NyBoard collapsed

● What is a bootloader?

Every NyBoard has to go through functionality checks before shipping, so they should already have a
compatible bootloader installed. However, in rare cases, the bootloader may collapse then you won't be
able to upload sketches through Arduino IDE.

Well, it's not always the bootloader if you cannot upload your sketch:

 Sometimes your USB board will detect a large current draw from a device and deactivate the whole
USB service. You will need to restart your USB service, or even reboot your computers;

You need to install the driver for the FTDI USB 2.0 to the UART uploader;

You haven't selected the correct port;

Bad contacts;

Bad luck. Tomorrow is another day!

If you really decide to re-burn the bootloader:

With NyBoard V1_*, you can simply choose Arduino Uno under the Tool menu of Arduino IDE.

Select your ISP (In-System Programmer). The above screenshot shows two popular programmers: the
highlighted USBtinyISP is a cheap bootloader you can buy, while the checked Arduino as ISP can let
you use a regular !Arduino as ISP

https://www.arduino.cc/en/Hacking/Bootloader?from=Tutorial.Bootloader
https://www.arduino.cc/en/Tutorial/ArduinoISP

Connect the programmer with the SPI port on NyBoard. Notice the direction when connecting. Make
sure they have good contact.
Burn bootloader. If it's your first time doing so, wait patiently until you see several percent bars reach
100% and no more messages pop up for one minute.

4.2.5. Connect the uploader (sometimes referred to as the programmer)

Connect your computer with the uploader through USB to micro-USB cable. The uploader has three LEDs,
power, Tx, and Rx. Right after the connection, the Tx and Rx should blink for one second indicating initial
communication, then dim. Only the power LED should keep lighting up. You can find a new port under Tool-
>Port as “/dev/cu.usbserial-xxxxxxxx” (Mac) or “COM#” (Windows).

For Linux, once the uploader is connected to your computer, you will see a “ttyUSB#” in the serial port list.
But you may still get a serial port error when uploading. You will need to give the serial port permission.
Please go to this link and follow the instructions: https://playground.arduino.cc/Linux/All/#Permission

https://playground.arduino.cc/Linux/All/#Permission

If Tx and Rx keep lighting up, there’s something wrong with the USB communication. You won’t see the new
port. It’s usually caused by overcurrent protection by your computer, if you’re not connecting NyBoard with
an external power supply and the servos move all at once.

If you cannot find the serial port after connecting to your computer, you may need to install the
driver for the CH340 chip.

Mac: http://www.wch.cn/download/CH341SER_MAC_ZIP.html

Windows: http://www.wch.cn/download/CH341SER_EXE.html

4.2.6. Connect Bluetooth uploader (optional)

It’s possible to program and communicate with Bittle wirelessly. You can even control Bittle with a
 or from there!smartphone APP web API

We include our official in the standard Bittle kit. It can be used for wirelessly uploading
sketches and communicating with the robot. The baud rate is set to 115200.

Bluetooth dongle

You need to connect it to your computer like what you do with a Bluetooth AirPod. The default passcode is
0000 or 1234. Then you can select it under Tools->Port of Arduino IDE, and use it in the same way as the
wired uploader.

http://www.wch.cn/download/CH341SER_MAC_ZIP.html
http://www.wch.cn/download/CH341SER_EXE.html
http://www.codeandrobots.com/
https://www.petoi.com/forum/software/web-api-to-control-nybble-opencatweb
https://docs.petoi.com/modules/bluetooth-dual-mode

On Mac, the Bluetooth may lose connection after several uploads. In that case, delete the
connection and reconnect to resume the functionality.

The Bluetooth dongle is not included in the kit sold by Seeed Studio or its partners. Please write to
support@petoi.com for more information.

4.2.7. Download the OpenCat package

We keep updating the codes as an open-source project. You can star and follow our
 to get the newest features and bug fixes. You can also share your codes with worldwide

OpenCat users.

GitHub
repository

Download a fresh OpenCat repository from GitHub: . It’s better if
you utilize GitHub’s version control feature. Otherwise, make sure you download the WHOLE OpenCat
FOLDER every time. All the codes have to be the same version to work together.

https://github.com/PetoiCamp/OpenCat

https://github.com/PetoiCamp/OpenCat
https://github.com/PetoiCamp/OpenCat

If you download the Zip file of the codes, you will get an OpenCat-main folder after unzipping. You need
to rename it to OpenCat before opening the OpenCat.ino.

No matter where you save the folder, the file structure should be:

There are several testX.ino codes in ModuleTests folder. You can upload them to test certain modules
separately. Open any testX.ino sketch with prefix “test”. (I recommend using testBuzzer.ino as your first
test sketch)

Open up the serial monitor and set up the baud rate. With NyBoard V1_*, choose the board as Arduino
Uno and later set the baud rate to 115200 in both the code and the serial monitor.

Compile the code. There should be no error messages. Upload the sketch to your board and you should
see Tx and Rx LEDs blink rapidly. Once they stop blinking, messages should appear on the serial
monitor.

Make sure you set "No line ending" to before entering your commands. Otherwise, the invisible '\n' or '\r'
characters will confuse the parsing functions.

For Linux machines, you may see the error message like "permission denied". You will need to add
execution privilege to the avr-gcc to compile the Arduino sketch: sudo chmod +x

filePathToTheBinFolder/bin/avr-gcc

Furthermore, you need to add execution permission to all files within /bin, so the command would be :
sudo chmod -R +x /filePathToTheBinFolder/bin

4.3. Arduino IDE as an interface

With the USB/Bluetooth uploader connecting NyBoard and Arduino IDE, you have the ultimate interface to
communicate with NyBoard and change every byte on it.

I have defined a set of serial communication protocol for NyBoard:

All the token starts with a single Ascii encoded character to specify its parsing format. They are case-
sensitive and usually in lower case.

Some commands, like the c and m commands can be combined.

For example:

Successive "m8 40", "m8 -35", "m 0 50" can be written as "m8 40 8 -35 0 50". You can combine up
to four commands of the same type. To be exact, the length of the string should be smaller than 30
characters. You can change the limit in the code but there might be a systematic constraint for the
serial buffer.

Some tokens haven't been implemented, such as 'h'.

4.4. Raspberry Pi serial port as an interface

Only when using Pi as a master controller. Bittle doesn't need a Pi to move.

You can solder a 2x5 socket on NyBoard to plug in a Raspberry Pi. Pi 3A+ is the best fit for Bittle's
dimension.

After you solder on the socket, you won't be able to install the back cover of Bittle.

You need to unplug the 6-pin programmer for the NyBoard before mounting the Pi to the board.

The red can be 3D printed. Pi standoff

https://github.com/PetoiCamp/NonCodeFiles/blob/master/stl/standoffPi.stl

As shown in the , the arguments of tokens supported by Arduino IDE's serial monitor are all
encoded as Ascii char strings for human readability. While a master computer (e.g. RasPi) supports extra
commands, mostly encoded as binary strings for efficient encoding. For example, when encoding angle 65
degrees:

serial protocol

Ascii: takes 2 bytes to store Ascii characters '6' and '5'

Binary: takes 1 byte to store value 65, corresponding to Ascii character 'A'

What about value -113? It takes four bytes as an Ascii string but still takes only one byte in binary
encoding, though the content will no longer be printable as a character.

Obviously, binary encoding is much more efficient than the Ascii string. However, the message transferred
will not be directly human-readable. In the OpenCat repository, I have put a simple Python script

 that can handle the serial communication between NyBoard and Pi.ardSerial.py

4.4.1. Config Raspberry Pi serial port

In Pi's terminal, type sudo raspi-config

Under the Interface option, find Serial. Disabled the serial login shell and enable the serial interface to use
the primary UART:

1. Run raspi-config with sudo privilege: sudo raspi-config .

2. Find Interface Options -> Serial Port.

3

https://bittle.petoi.com/4-configuration#4-3-arduino-ide-as-an-interface
https://github.com/PetoiCamp/OpenCat/blob/main/serialMaster/ardSerial.py

3. At the option Would you like a login shell to be accessible over serial? select

'No'.
4. At the option Would you like the serial port hardware to be enabled? select 'Yes'.

5. Exit raspi-config and reboot for changes to take effect.

You also need to DISABLE the to avoid repeating reset signals sent by Pi's
GPIO 4.

1-wire interface of Pi

A good tutorial on the Pi Serial

If you plug Pi into NyBoard's 2x5 socket, their serial ports should be automatically connected at 3.3V.
Otherwise, pay attention to the Rx and Tx pins on your own AI chip and its voltage rating. The Rx on your
chip should connect to the Tx of NyBoard, and Tx should connect to Rx.

4.4.2. Change the permission of ardSerial.py

If you want to run it as a bash command, you need to make it executable:

chmod +x ardSerial.py

You may need to change the proper path of your Python binary on the first line:

#!/user/bin/python

4.4.3. Use ardSerial.py as the commander of Bittle

NyBoard has only one serial port. You need to UNPLUG the FTDI converter if you want to control
Bittle with Pi's serial port.

Typing ./ardSerial.py <args> is almost equivalent to typing <args> in Arduino's serial monitor. For

example, ./ardSerial.py kcrF means "perform skill crawl Forward".

Both ardSerial.py and the parsing section in OpenCat.ino need more implementations to support all the
serial commands in the protocol.

4.5. Battery

Though you can program NyBoard directly with the USB uploader, external power is required to drive the
servos.

https://www.raspberrypi-spy.co.uk/2018/02/enable-1-wire-interface-raspberry-pi/
https://www.raspberrypi.org/documentation/configuration/uart.md
https://github.com/PetoiCamp/OpenCat/blob/master/SerialMasterPython/ardSerial.py

4.5.1. Voltage

NyBoard requires 7.4~8.4V external power to drive the servos. We include our customized Li-ion battery
with built-in charging and protection circuit in the Bittle kit. Short press the battery's button will show its
status. Blue light indicates it has power, and red means the power is low.

4.5.3. Connection and Power On

Be careful with the polarity when connecting the power supply. The terminal on NyBoard has an anti-reverse
socket, so you won't be able to plug in the wrong direction. See for the detailed connection instruction.here

Please long press the button of the battery for 3 seconds to power on the battery.

Reversed connection may damage your NyBoard!

4.5.4. Battery life varies according to usage

It can last hours if you're mainly coding and testing postures, or less than 30 mins if you keep Bittle running.

The battery light will turn red when the power is low. The power will be cut off automatically.

 4.5.5. Charging

Use a 5V-1A USB charger to charge the battery. We don't recommend using fast chargers. The battery will
NOT supply power during charging. Keep the battery in your sight when charging.

4.5.6. After use

After playing, remember to turn off the battery. It's recommended to unplug the battery from the NyBoard's
terminal.

5 Connect Wires

"Everything is connected."

5.1. Servo wiring

Connect the wires of servos to the NyBoard servo pins as below. They follow a circular symmetry. Notice the
skipped pins between the head and leg servos. They are reserved for our future robots with more joints.

The black wire (GND wire) should be closer to the board.

Bottom view:

Insert the infrared receiver under the back plate so that the sensor can expose to the outside.

Make sure that the wires go into the body, bypass the columns, then plug into the servo pins. Arrange the
wires so that they don't get in between the servo plugs and the body frame. NyBoard should be leveled on
the four standoffs. Use four M2x8 self-tapping screws to fix the NyBoard.

Completed:

5.2. Battery

Insert the battery's plug into NyBoard's anti-reverse power socket.

Hold the button of the battery for 3 seconds to power on the battery. If the LED on the battery lights red,
recharge the battery until it turns green. The blue and orange “eyes” of the Petoi logo on NyBoard should
light on.

6 Calibration and Final Assembly

"A miss is as good as a mile."

Calibration is vital for Bittle to work properly.

In the previous sections, we have prepared Bittle's body parts, but haven’t screwed them onto servos
because we still need to calibrate body parts to be attached to servos at the right angles.

If we don’t calibrate the servos before attaching them, they may rotate to any direction, get stuck, cause
damage to either the servos or body parts and cause robot limbs not to function properly.

The calibration has the following steps:

1. Write constants to the board

2. Power on the circuit, let servos rotate freely to zero angle/calibration state

3. Attach body parts to the servos

4. Fine-tune the body part placements and store the calibration results on board.

Please make sure you turn on the battery first.

The can be found on the OpenCat forum. The principles are the same for Nybble
and Bittle.

logic behind calibration

6.1 Write constants to NyBoard

6.1.1. Three types of constants to be saved to NyBoard:

1. Assembly-related definitions, like joint mapping, rotation direction, sensor pins. They are pretty fixed and
are mostly defined in OpenCat.h. They are even kept consistent with my future robots;

2. Calibration-related parameters, like MPU6050 offsets and joint corrections. They are measured in
realtime and are saved in the onboard EEPROM. They only need to be set up once;

3. Skill-related data, like postures, gaits, and behaviors. They are mostly defined in InstinctBittle.h. You
can add more customized skills too.

6.1.2. Upload and run WriteInstinct.ino.

The role for WriteInstinct.ino is to write constants to either onboard or I2C EEPROM, and save calibration

https://www.petoi.com/forum/basic-assembly-and-setup/the-logic-behind-calibration-process

values. It will be overwritten by the main sketch OpenCat.ino afterward.

You need to change the * on line #define NyBoard_V*_* in OpenCat.h to match your

NyBoard’s version. The version number is printed beside the logo on the NyBoard.

Make sure to set the serial monitor as 115200 baud rate and no line ending.

You also need to dial the slide switch on NyBoard to Arduino rather than Pi!

After you upload WriteInstinct.ino via Arduino IDE, open the serial monitor. You will see several questions:

Reset all joint calibration? (Y/n)

If you have never calibrated the joints, or if you want to recalibrate the servos with a fresh start(zero state),
type ‘Y’ to the question.

Do you need to update Instincts? (Y/n)

If you have modified the Instinct.h in any way, you should type ‘Y’. Though it’s not always necessary once
you have a deeper understanding of memory management.

Calibrate MPU? (Y/n)

If you have never calibrated the MPU6050, i.e. the gyro/accelerometer sensor, type ‘Y’.

Sometimes the program could halt at the connection stage. You can close the serial monitor and reopen it,
or press the reset button on NyBoard, to restart the program.

6.1.3. Upload OpenCat.ino

You also need to upload OpenCat.ino to save the last constants and activate the demo functionalities.

6.2 Initial calibration

6.2.1 Enter calibration mode via remote controller

You MUST plug in all the servos and battery for proper calibration.

Before we attach the legs, the servos' output shafts should be at the zero state. You can read this forum post
to understand the . logic behind the calibration process

6.2.2 Head and limb calibration

Take one assembled upper leg and keep Bittle in the calibration mode by pressing the third row, third
column (3, 3) button on . the IR remote controller

Attach the yellow side of the upper leg to the shoulder servo. Try to find the direction closest to the vertical
angle. Don't rotate the servo during installation. Install the lower leg at a perpendicular angle to the upper
leg. Then repeat to install all other limbs.

https://www.petoi.com/forum/basic-assembly-and-setup/the-logic-behind-calibration-process
https://bittle.petoi.com/7-play-with-bittle#7-2-control-with-infrared-remote

A visualization of the perfect zero(calibrated) state when you enter the calibration mode

You can use the included "L" shape tuner as a reference(see next section) for keeping things in line.

Next, insert the output shaft of the head servo into the servo arm of the neck. Try your best to attach the
head to point straight ahead.

6.2.3 Testing and validations

Hold the body of Bittle in the air. Press the "1" button on the IR remote controller to make Bittle perform a
few "stretches". Observe if all the limbs are moving fine.

If the movements look intuitive， Place Bittle on a flat floor. Press a few action buttons on
 to make Bittle move around and check if its moves look fine.

the IR remote
controller

Then press the "EQ" button to get back to the calibration mode. Observe if its upper legs and lower legs are
perpendicular to each other and whether the lower legs are parallel to the ground.

If the legs/head are at the right positions, use the flat end screw to fix the limbs and head onto servos.

Otherwise, take off limbs to do a few rounds around of calibrations.

If you can't achieve good results, it's time to do the precise calibration.

https://bittle.petoi.com/7-play-with-bittle#7-2-control-with-infrared-remote

6.3 Precise calibration

6.3.1 Understand the zero state and the coordinate system

The zero state is defined as the middle point of the servo’s reachable range.

In calibration mode with all servos rotated to their zero states(zero angles), rotating the limbs counter-
clockwise from their zero states will be positive (same as in polar coordinates). The only exception is the tilt
angle for the head. It’s more natural to say head up, while it’s the result of rotating clockwise.

A visualization of the perfect zero(calibrated) state when you enter the calibration mode

If we take a closer look at the servo shaft, we can see it has a certain number of teeth. That’s for attaching
the servo arms, and to avoid sliding in the rotational direction. In our servo sample, the gears are dividing
360 degrees to 25 sectors, each taking 14.4 degrees(offset of -7.2~7.2 degrees). That means we cannot
always get exact perpendicular installation.

6.3.2 Understand the serial outputs via software-based calibration

Software-based calibration for servos can be done in either WriteInstinct.ino or OpenCat.ino. I recommend
you do it with WriteInstinct.ino in case there’s something wrong with the constants.

Upload either file to Bittle via Arduino IDE. Then in the serial monitor, type ‘c’ to enter calibration mode.

The servos should rotate one by one with unnoticeable time intervals then stop. Depending on their initial
shaft direction, some may travel larger angles until stopping at the middle point. There will be noise coming
from the gear system of the servos. You will see a calibration table like the following:

The first row is the joint indexes, the second row is their calibration offsets:

In
d
e
x

0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

O
ff
s
et

-
1

-
1

-
1

-
1

-
1

-
1

-
1

-
1

-
1

-
1

-
1

-
1

-
1

-
1

-
1

Initial values are “-1” or “0”, and should be changed by later calibration.

6.3.3 Use ‘L’ shaped joint tuner

When watching something, the observation will change from different perspectives. That’s why when
measuring length, we always want to read directly above a referencing ruler.

It’s especially important that you keep a parallel perspective when calibrating Bittle. Use the 'L' shaped joint

tuner as a parallel reference to avoid reading errors. Align the tips on the tuner with the center of the screws
in the shoulder and knee joints, and the little hole on the tip of the foot. Look along the co-axis of the centers.
For each leg, calibrate shoulder servos (index 8~11) first, then the knee servos(index 12~15). When
calibrating the knee, use the matching triangle windows on both the tuner and shank to ensure parallel
alignment.

Align the upper leg first

Pay attention to the reference edges for the lower leg

6.3.4 Fine-tune the calibration on the software side

The command for fine-tuning calibration (refer to the) is formatted
as cIndex Offset . Notice that there’s a space between cIndex and Offset.

serial communication protocol for NyBoard

https://bittle.petoi.com/4-configuration#4-3-arduino-ide-as-an-interface

Joint Indexes

For example,

c8 6 means giving the 8th servo an offset of 6 degrees.

c0 -4 means giving the 0th servo(the head) an offset of -4 degrees.

If you find the absolute value of offset is larger than 9, that means you are not attaching the limb
closest to its zero state. That will result in a decreased reachable range of the servo on either side.
Take off the limb and rotate it by one tooth. It will result in an opposite but smaller offset.

For example, if you have to use -9 as the calibration value, take the limb off, rotate by one tooth then attach
back. The new calibration value should be around 5, i.e., they sum up to 14. Avoid rotating the servo shaft
during this adjustment.

Find the best offset that can bring the limb to the zero state. It's a process of trial and error.

After calibration, remember to type ‘s’ to save the offsets. Otherwise, they will be forgotten when exiting
the calibration state. You can even save every time after you’re done with one servo.

6.3.5 Testing and validation

After calibration, type ‘d’ or ‘kbalance’ to validate the calibration. It will result in Bittle symmetrically moving
its limbs between rest and stand state.

Please refer to the previous testing & validation section for the process.

You may need to do a few rounds of calibrations to achieve optimal states.

6.3.6 Center of mass

Try to understand how Bittle keeps balance even during walking. If you are adding new components to
Bittle, try your best to distribute its weight symmetrically about the spine. You may also need to slide the
battery holder back and forth to find the best spot for balancing. Because the battery is heavier in the front,
you can also insert it in a reversed direction to shift the center of mass more towards the back.

You may need to recalibrate if there's a change to the center of mass.

6.4 Finish assembling

6.4.1 Head

To lock in the head, use an M2x4 flat head screw to lock the servo shaft and the servo arm from the bottom
side of the chassis.

6.4.2 Limbs(upper and lower legs)

Use the M2x4 screws to lock all the limbs.

6.4.3 Wire shield

There’re two snaps on both sides of the wire shield. Their relative height is different.

Flatting the wire of the lower leg to remove any coils. Then snap the wire shield to the upper leg.

The edge of the shield should be parallel to the surface of the upper leg.

You may need to recalibrate if more or less weight is put on Bittle or the center of mass has been changed.

Below shows the wrong installation configuration.

6.4.4 Body cover and tail

The 6-pin female socket is used for connecting the programmer and communication dongles. Carefully bend
it forward in a smooth arc if you are not going to attach a Raspberry Pi.

Attach the tail to the pin on the cover.

Snap the cover from one side of the body. Organize the wires so that they don't get stuck between the cover
and the body. Then push the cover down to the other side of the body. You should hear a clear snap sound.

7 Play with Bittle

"You can't direct the wind, but you can adjust your sails."

7.1. Control with Arduino IDE

Try the following serial commands in the serial monitor:

“ksit”

“m0 30”

“m0 -30”

“kbalance”

“kwkF”

“ktrL”

“d”

The quotation mark just indicates that they are character strings. Don’t type quotation marks in the
serial monitor.

Some more available commands:

7.2. Control with Infrared remote

7.2.1. Keymap

Only the position of the buttons matters, though those symbols can help you remember the functionalities.
I’m going to define position-related symbols to refer to those keys.

I’m using abbreviations for key definitions to reduce SRAM usage. Due to the limited keys of a physical
remote, I always change the definitions for fun.

The following map is just an illustration. Check OpenCat.h for the actual key definitions in effect.
They are also open to your customization.

We also made a customized remote panel for future batches. Previous users can download the design file
and print it on A4 paper.

newPanel.pdf 2MB

PDF

7.2.2. Check out the following featured motions

Rest puts the robot down and shuts down the servos. It's always safe to click it if Bittle is doing
something AWKWARD.

Balance is the neutral standing posture. You can push Bittle from the side, or make it stand up will hind
legs and tail. You can test its balancing ability on a fluctuating board. Actually balancing is activated in
most postures and gaits.

Shut down servos will pause the current motion and turn off the power of the servos so that they will
not hold the position.

Pressing F/L/R will make the robot move forward/left/right

B will make the robot move backward

Calibrate puts the robot into calibration posture and turns off the gyro

Stepping lets the robot step at the original spot

Crawl/walk/trot/run are the gaits that can be switched and combined with the direction buttons

Gyro will turn on/off the gyro for self-balancing. Turning off the gyro can accelerate and stabilize the
slower gaits. But it’s NOT recommended for faster gaits such as run and bound.

Buttons after trot are preset postures or other skills

Different surfaces have different friction and will affect walking performance. The current trained
parameters work better without the silicone toe covers. They are provided for your experiments. The
carpet will be too bushy for Bittle's short legs. It may only crawl (command kcrF) over this kind of tough
terrain.

You can pull the battery pack down and slide along the longer direction of the belly. That will tune the
center of mass, which is very important for walking performance. Otherwise, it may keep falling down.

When Bittle is walking, you can let it climb up/down a small slope (<10 degrees)

Whatever Bittle is doing, you can lift it vertically, and it will stop moving, just like a dog scruffed on the
neck.

If Bittle keeps beeping after you connect the USB uploader, with numbers printed in the serial
monitor, it’s the low voltage alarm being triggered. You need to power NyBoard with the battery
to pass the threshold.

The servos are designed to be driven by internal gears. Avoid rotating the servos too fast from
outside.

Don’t keep Bittle running for too long. It will overheat the electronics and reduce the servos’
life span.

If you feel something is wrong with Bittle, press the reset button on NyBoard to restart the
program.

Bittle has acrophobia! If you lift it and rotate it over a certain degree, its current movement will
be interrupted. Don't flip Bittle over to scare it!

Be kind as if you were playing with a real dog. (^=◕ᴥ◕=^)

8 Teach Bittle New Skills

"Give a cat a fish and you feed it for a day. Teach a cat to fish and you feed it for a lifetime."

8.1. Understand skills in InstinctBittle.h.

EEPROM has limited (1,000,000) write cycles. So I want to minimize the write operations on it.

There are two kinds of skills: Instincts and Newbility. The addresses of both are written to the onboard
EEPROM(1KB) as a lookup table, but the actual data is stored at different memory locations:

I2C EEPROM (8KB) stores Instincts.

The Instincts are already fine-tuned/fixed skills. You can compare them to “muscle memory”. Multiple
Instincts are linearly written to the I2C EEPROM only once with WriteInstinct.ino. Their addresses are
generated and saved to the lookup table in onboard EEPROM during the runtime of WriteInstinct.ino.

PROGMEM (sharing the 32KB flash with the sketch) stores Newbility.

A Newbility is any new experimental skill that requires a lot of tests. It's not written to the I2C nor onboard
EEPROM, but the flash memory in the format of PROGMEM. It has to be uploaded as one part of the
Arduino sketch. Its address is also assigned during the runtime of the code, though the value rarely changes
if the total number of skills (including all Instincts and Newbilities) is unchanged.

8.2. Example InstinctBittle.h

//a short version of InstinctBittle.h as example1

2

#define BITTLE3

#define NUM_SKILLS 44

#define I2C_EEPROM5

6

const char rest[] PROGMEM = { 7

1, 0, 0, 1,8

 -30, -80, -45, 0, -3, -3, 3, 3, 75, 75, 75, 75, -55, -55, -55, -55,};9

const char zero[] PROGMEM = { 10

1, 0, 0, 1,11

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,};12

13

const char crF[] PROGMEM = { 14

36, 0, -3, 1,15

 61, 68, 54, 61, -26, -39, -13, -26,16

 66, 61, 58, 55, -26, -39, -13, -26,17

 ...18

 51, 81, 45, 72, -25, -37, -12, -25,19

 55, 76, 49, 68, -26, -38, -13, -26,20

21

 60, 70, 53, 62, -26, -39, -13, -26,
21

};22

23

const char pu[] PROGMEM = { 24

-8, 0, -15, 1,25

 6, 7, 3, 26

 0, 0, 0, 0, 0, 0, 0, 0, 30, 30, 30, 30, 30, 30, 30, 30, 5,27

 15, 0, 0, 0, 0, 0, 0, 0, 30, 35, 40, 29, 50, 15, 15, 15, 5,28

 30, 0, 0, 0, 0, 0, 0, 0, 27, 35, 40, 60, 50, 15, 20, 45, 5,29

 15, 0, 0, 0, 0, 0, 0, 0, 45, 35, 40, 60, 25, 20, 20, 60, 5,30

 0, 0, 0, 0, 0, 0, 0, 0, 50, 35, 75, 60, 20, 30, 20, 60, 6,31

 -15, 0, 0, 0, 0, 0, 0, 0, 60, 60, 70, 70, 15, 15, 60, 60, 6,32

 0, 0, 0, 0, 0, 0, 0, 0, 30, 30, 95, 95, 60, 60, 60, 60, 6,33

 30, 0, 0, 0, 0, 0, 0, 0, 75, 70, 80, 80, -50, -50, 60, 60, 8,34

};35

36

#if !defined(MAIN_SKETCH) || !defined(I2C_EEPROM)37

const char* skillNameWithType[] =38

{"crI", "puI", "restI", "zeroN",};39

const char* progmemPointer[] = 40

{cr, pu, rest, zero, };41

#else42

const char* progmemPointer[] = {zero};43

#endif44

8.2.1. Defined constants

define WalkingDOF 8

defines the number of DoF (Degree of Freedom) for walking is 8 on Bittle.

define NUM_SKILLS 4

defines the total number of skills is 4. It should be the same as the number of items in the list const

char* skillNameWithType[] .

define I2C_EEPROM

Means there’s an I2C EEPROM on NyBoard to save Instincts.

If you are building your own circuit board that doesn’t have it, comment out this line. Then both
kinds of skills will be saved to the flash as PROGMEM. Obviously, it will reduce the available flash
space for functional codes. If there were too many skills, it may even exceed the size limit for
uploading the sketch.

8.2.2. Data structure of skill array

One frame of joint angles defines a static posture, while a series of frames defines sequential postures,
such as a gait or a behavior. Observe the following two examples:

const char rest[] PROGMEM = { 1

1, 0, 0, 1,2

 -30, -80, -45, 0, -3, -3, 3, 3, 75, 75, 75, 75, -55, -55, -55, -55,};3

4

const char crF[] PROGMEM = { 5

36, 0, -3, 1,6

 61, 68, 54, 61, -26, -39, -13, -26,7

 66, 61, 58, 55, -26, -39, -13, -26,8

 ...9

 51, 81, 45, 72, -25, -37, -12, -25,10

 55, 76, 49, 68, -26, -38, -13, -26,11

 60, 70, 53, 62, -26, -39, -13, -26,12

};13

14

They are formatted as:

rest is a static posture, it has only one frame of 16 joint angles. crF is the abbreviation for "crawl forward". It
has 36 frames of 8 (or 12, depending on the number of walking DOF) joint angles that form a repetitive gait.
Expected body orientation defines the body angle when the robot is conducting the skill. If the body is tilted
from the expected angles, the balancing algorithm will calculate some adjustments. Angle ratio is used
when you want to store angles larger than the range of -128 to 127. Change the ratio to 2 so that you can
save those large angles by dividing 2.

A posture has only one frame, and a gait has more than one frames and will be looped over.

The following example is a behavior:

const char pu[] PROGMEM = { 1

-8, 0, -15, 1,2

 6, 7, 3, 3

 0, 0, 0, 0, 0, 0, 0, 0, 30, 30, 30, 30, 30, 30, 30, 30, 5,4

 15, 0, 0, 0, 0, 0, 0, 0, 30, 35, 40, 29, 50, 15, 15, 15, 5,5

 30, 0, 0, 0, 0, 0, 0, 0, 27, 35, 40, 60, 50, 15, 20, 45, 5,6

 15, 0, 0, 0, 0, 0, 0, 0, 45, 35, 40, 60, 25, 20, 20, 60, 5,7

 0, 0, 0, 0, 0, 0, 0, 0, 50, 35, 75, 60, 20, 30, 20, 60, 6,8

 -15, 0, 0, 0, 0, 0, 0, 0, 60, 60, 70, 70, 15, 15, 60, 60, 6,9

10

 0, 0, 0, 0, 0, 0, 0, 0, 30, 30, 95, 95, 60, 60, 60, 60, 6,
10

 30, 0, 0, 0, 0, 0, 0, 0, 75, 70, 80, 80, -50, -50, 60, 60, 8,11

};12

pu is short for "push up", and is a "behavior". Its data structure contains more information than posture and
gait.

The first four elements are defined the same as before, except that the number of frames is saved as a
negative value to indicate that it's a behavior. The next three elements define the repeating frames in the
sequence: starting frame, ending frame, looping cycles. So the 6, 7, 3 in the example means the behavior
should loop from the 7th to the 8th frame for 3 times (the index starts from 0). The whole behavior array will
be executed only once, rather than looping over like the gait.

Each frame contains 16 joint angles, and the last 4 elements define the speed of the transition, and the
delay condition after each transition:

1. The default speed factor is 4, it can be changed to an integer from 1 (slow) to 127 (fast). The unit is
degree per step. If it's set to 0, the servo will rotate to the target angle by its maximal speed (about
0.07sec/60 degrees). It's not recommended to use a value larger than 10 unless you understand the
risks.

2. The default delay is 0. It can be set from 0 to 127, the unit is 50 ms.

3. The 3rd number is the trigger axis. If it's not 0, the previous delay time will be ignored. The trigger of the
next frame will depend on the body angle on the corresponding axis. 1 for the pitch axis, and 2 for the
roll axis. The sign of the number defines the direction of the threshold, i.e. if the current angle is smaller
or larger than the trigger angle.

4. The 4th number is the trigger angle. It can be -128 to 127 degrees.

8.2.3. Suffix for indicating Instinct and Newbility

You must upload WriteInstinct.ino to have the skills written to EEPROM for the first time. The following
information will be used:

const char* skillNameWithType[] =1

{"crI", "puI", "restI", "zeroN",};2

const char* progmemPointer[] = 3

{cr, pu, rest, zero, };4

Notice the suffix I or N in the skill name strings. They tell the program where to store skill data and
when to assign their addresses.

Later, if the uploaded sketch is the main sketch OpenCat.ino, and if you are using NyBoard that has an I2C
EEPROM, the program will only need the pointer to the Newbility list

const char* progmemPointer[] = {zero};

 to extract the full knowledge of pre-defined skills.

8.3. Define new skills and behaviors

8.3.1 Modify the existing skill template

There’s already a skill called “zeroN” in InstinctBittle.h. It’s a posture at the zero state waiting for your new
definition.

You can first use the command mIndex Offset to move an individual joint to your target position, then

replace the joint angles (bold fonts) in array at once:

const char zero[] PROGMEM = { 1

1, 0, 0, 1,2

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,};3

Because it’s declared as a Newbility and doesn’t require writing to I2C EEPROM, you can simply upload
OpenCat.ino everytime you change the array (without uploading WriteInstinct.ino). You can trigger the
new posture by pressing 7> on the IR remote, or type kzero in the serial monitor.

You can rename this skill, but remember to update the keymap of the IR remote.

8.3.2. Add more skills in InstinctBittle.h

You can add more skills in InstinctBittle.h. Remember to increase the skill number at the beginning of the file
and add the corresponding skill name and pointer in the skill list array.

A skill can be called from the serial monitor with the token 'k' command. For example, ksit will move Bittle

to posture "sit".

You can also tune new skills by sending posture frames through the serial port, using the m, i, l tokens
without uploading a new sketch. After fine-tuning the skill, you can save it in the instinctBittle.h and upload it
to the board as a newbility or instinct.

Always check the actual code for the available skill names. We may alter the skill set as we iterate
the software.

This is a good starting point if you want to develop a customized gait. If you are going to do some
inverse kinematics calculation, you may use the following key dimensions to build your model.

git repo

https://github.com/ger01d/kinematic-model-opencat

8.3.3. Automation

So far Bittle is controlled by the infrared remote. You make decisions for Bittle's behavior.

You can connect Bittle with your computer or smartphone, and let them send out instructions automatically.
Bittle will try its best to follow those instructions.

By adding some sensors (like a touch sensor), or some communication modules (like a voice control
module), you can bring new perception and decision abilities to Bittle. You can accumulate those automatic
behaviors and eventually make Bittle live by itself!

9 Understand OpenCat.h

"Let the cat out of the bag." ♂

It will make another textbook.

The controlling framework behind Bittle is OpenCat, which I've been developing for a while. You can read
more stories from my on Hackster.io.posts

https://www.hackster.io/petoi/opencat-845129

It's too much work for now ♂ but you are welcome to discuss it with me on the forum or through email. For
example, there are on the forum. I will keep the code compatible with future OpenCat models,
and even ! Hopefully, the documentation will be completed during the process.

code reviews
your own DIY robots

10 Extensible Modules

The head of Bittle is designed to be a clip to hold extensible modules. We compiled a sensor pack with
some popular modules, but its contents may change in the future. You can also wire other add-ons thanks to
the rich contents of the Arduino and Raspberry Pi community.

You can find the demo codes of these modules in our GitHub repository. They should be in the
folder if you download the whole OpenCat repository.

ModuleTests

The loudness and light level modules can generate for the corresponding signals and
should be connected to the analog Grove socket.

analog readings

 Grove - Sound Sensor/ Noise Detector

https://www.petoi.com/forum/software/flavien-opencat-code-reviews
https://www.petoi.com/forum/showcase
https://github.com/PetoiCamp/OpenCat/tree/main/ModuleTests
https://github.com/PetoiCamp/OpenCat/tree/main/ModuleTests/test_Loudness_Light
https://www.seeedstudio.com/Grove-Loudness-Sensor.html

Grove - Light Sensor v1.2 - LS06-S phototransistor

The touch, reflection, PIR sensors can generate digital 1 or 0 as a switch signal. So they should be
connected to the digital Grove socket. In the , we use the fourth socket with D6 and D7.demo code

 Grove - Touch Sensor

Grove - Infrared Reflective Sensor v1.2

Grove - mini PIR motion sensor

https://www.seeedstudio.com/Grove-Light-Sensor-v1-2-LS06-S-phototransistor.html
https://github.com/PetoiCamp/OpenCat/tree/main/ModuleTests/test_Touch_Reflection_PIR
https://www.seeedstudio.com/Grove-Touch-Sensor.html
https://www.seeedstudio.com/Grove-Infrared-Reflective-Sensor-v1-2.html
https://www.seeedstudio.com/Grove-mini-PIR-motion-sensor-p-2930.html

The , , and module should be connected to the I2C Grove socket. intelligent camera gesture OLED

Grove - Gesture Sensor for Arduino (PAJ7620U2)

Grove - OLED Display 0.96" (SSD1315)

 MU Vision Sensor 3

documentation

advanced user manual

11 Tutorial on Creating New Skills

Preparation

Get familiar with the standard process of assembly, uploading the standard program Opencat.ino, and

https://github.com/PetoiCamp/BallTracking
https://github.com/PetoiCamp/OpenCat/tree/main/ModuleTests/testGesture
https://github.com/PetoiCamp/OpenCat/tree/main/ModuleTests/testOLED
https://www.seeedstudio.com/Grove-Gesture-PAJ7620U2.html
https://www.seeedstudio.com/Grove-OLED-Display-0-96-SSD1315-p-4294.html
http://store.morpx.com/page.php?a=sensor-support
https://morpx-docs.readthedocs.io/en/latest/MUVS3/introduction.html#
https://drive.google.com/file/d/17ompJD5xtAi-hQEoZwoFsK_VIz4LaZ6I/view?usp=sharing

calibration (refer to). Validate that the following functions work as expected.chapter 6 of Bittle User Manuals

Press the button （>>|）which is in the 2nd row, the 2nd column on the IR remote. Later we will use (2,
2) as the index. You can also enter kbalance via serial port. Bittle should stand up and keep balance;

Press the button （9）which is in the 7th row, the 3rd column on the IR remote. Later we will use (7, 3)
as the index. You can also enter kzero via serial port. Bittle should enter a posture similar to the
calibration state, which is the "zero" skill in the program (as shown in the figure below).

A visualization of the perfect zero state

Open the folder WriteInstinct/, create a backup file of instinctBittle.h as instinctBittle.hBAK.

The coordinate system of Bittle is shown in the figure below.

The coordinate system

https://bittle.petoi.com/6-calibration

Yaw: Rotate around the Z-axis.

Pitch: Rotate around the Y-axis (nose up/down).

Roll: Rotate around the X-axis (tilt left/right).

For the legs, on the left side, counterclockwise is positive, clockwise is negative. On the right side, the
rotation directions are mirrored. The origin position and rotation direction of a single leg (upper/lower leg)
around the joint are shown in the first figure.

The indexing order of all the joints is shown in the figure below:

The indexing order of all the joints

The skill arrays are defined in WriteInstinct/instinctBittle.h, formated as the figure below. Note the index
starts from 0.

The format of skill arrays

Total # of Frames defines the number of frames of a certain skill.

For example, rest is a static posture, it has only one frame of 16 joint angles.

crF is the abbreviation for "crawl forward". It has 36 frames of 8 (or 12, depending on the number of walking
DOF) joint angles that form a repetitive gait.

Expected body orientation defines the body angle when the robot is conducting the skill. If the body is
tilted from the expected angles, the balancing algorithm will calculate some adjustments.

Angle ratio is used when you want to store angles larger than the range of -128 to 127. Change the ratio to
2 so that you can save those large angles by dividing 2.

Understand the format of a posture

Zero is a static posture, Find the zero array in instinctBittle.h：

const char zero[] PROGMEM = { 1

1, 0, 0, 1,2

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,};3

Change some of these values to：

const char zero[] PROGMEM = { 1

1, 0, 0, 1,2

70, 0, 0, 0, 0, 0, 0, 0, -60, 0, 0, 0, 60, 0, 0, 0,};3

Save the change, and upload the program OpenCat.ino to Bittle (Note: there is no need to upload
writeinsict.ino or opencat.h), after upload, press the button（9）which is in the 7th row, the 3rd column on
the IR remote to trigger the modified zero skill. You can see the posture is changed.

Explanation why the new zero posture looks in that way. The coordinate system with the new angle data is
shown in the figure below.

The first element (1) represents the total number of frames of the skill，1 means it is a static posture.

The 4th element (1) represents the Angle ratio. It means all the following indexed joint angles are actual
angles (because each of them multiply by 1).

From the 5th to the 20th elements represent 16 indexed joint angles.

For Bittle, the 5th element (joint index 0) means the servo on Bittle's neck rotates counterclockwise 70 (the
unit is in degrees). Bittle's head turn to it's left side.

The 13th element (joint index 8) means Bittle's left upper leg rotates clockwise 60 (the unit is in degrees)
around the joint.

The 17th element (joint index 12) means Bittle's left lower leg rotates counterclockwise 60 (the unit is in
degrees) around the joint.

All the other indexed joint angles remain 0 (the unit is in degrees).

You can define a new posture and upload it to the robot. Call the new posture with the IR remote or the serial
monitor.

Explain exceptions of expected body orientations

Look at the example of:

const char balance[] PROGMEM = { 1

1, 0, 0, 1,2

 0, 0, 0, 0, 0, 0, 0, 0, 30, 30, 30, 30, 30, 30, 30, 30,};3

and

const char sit[] PROGMEM = { 1

1, 0, -30, 1,2

 0, 0, -45, 0, -5, -5, 20, 20, 45, 45, 105, 105, 45, 45, -45, -45,};3

With the gyro activated, rotate the robot and see its adjustments. Explain why the expected angle is needed
in the definition.

The 2nd and 3rd elements represent Expected body orientation, corresponding to the roll angle and the
pitch angle.

The unit is in degrees.

The sign of the number follows the right-handed spiral rule, look in the direction pointed by the axis arrow,

clockwise is positive, counterclockwise is negative.

With the gyro activated, rotate Bittle, when the body is tilted from the expected angles, the balancing
algorithm will calculate some adjustments to keep it in this posture.

Explain exceptions of large angles

Look at the example of

const char rc[] PROGMEM = { 1

-3, 0, 0, 2,2

 0, 0, 0, 3

 0, 0, 0, 0, 0, 0, 0, 0, -88, -43, 67, 87, 42, -35, 42, 42, 15,4

 0, 0, 0, 0, 0, 0, 0, 0, -83, -88, 87, 42, 42, 42, 42, -40, 15,5

 -8, -20, -11, 0, -1, -1, 0, 0, 18, 18, 18, 18, -14, -14, -14, -14, 10,6

};7

It's designed for large angles out of the range -128~127.

The 4th element represents the angle ratio. It means all the following all indexed joint angles real values is
equal to each of them multiply by the value of this angle ratio.

Understand the format of a gait

A series of frames defines sequential postures, such as a gait. Find the bk array in instinctBittle.h：

const char bk[] PROGMEM = {1

 35, 0, 0, 1,2

 46, 54, 46, 54, -5, -23, -5, -23,3

 43, 58, 43, 58, -5, -24, -5, -24,4

 5

 52, 43, 52, 43, -5, -21, -5, -21,6

 50, 48, 50, 48, -5, -22, -5, -22,7

 47, 53, 47, 53, -5, -23, -5, -23,8

};9

bk is the abbreviation for "back".

The first four elements are defined the same as before, The first element (35) means it has 35 frames. Next
are 35 frames of 8 indexed joint angles that form a repetitive gait.

Understand the format of a behavior

Modify the zero skill as:

const char zero[] PROGMEM = { 1

-1, 0, 0, 1,2

0, 0, 0,3

70, 0, 0, 0, 0, 0, 0, 0, -60, 0, 0, 0, 60, 0, 0, 0,4,0,0,0};4

Upload the new zero skill and see the effect. It should be the same. (Later explanation a posture can be
considered as a behavior or gait with one frame.)

Copy the content of hi array to zero:

const char zero[] PROGMEM = { 1

-3, 0, -30, 1,2

 1, 2, 3, 3

 0, -20, -60, 0, 0, 0, 0, 0, 30, 30, 90, 80, 60, 60, -40, -30, 4, 1, 0, 0,4

35, -5, -60, 0, 0, 0, 0, 0, -75, 30, 75, 60, 40, 75, -30, 0, 10, 0, 0, 05

40, 0, -35, 0, 0, 0, 0, 0, -60, 30, 75, 60, 60, 75, -30, 0, 10, 0, 0, 06

};7

Change a few values:

const char zero[] PROGMEM = {1

-3, 0, -30, 1,2

 1, 2, 6, 3

 0, -20, -60, 0, 0, 0, 0, 0, 30, 30, 90, 80, 60, 60, -40, -30, 4, 1, 0, 0,4

35, -5, -60, 0, 0, 0, 0, 0, -75, 30, 75, 60, 40, 75, -30, 0, 10, 0, 0, 0,5

-40, 0, -35, 0, 0, 0, 0, 0, -60, 30, 75, 60, 60, 75, -30, 0, 20, 0, 0, 0,6

};7

Save and upload OpenCat.ino. Call the new zero skill to see the effect.

Explanation on the format of a behavior.

For example, the modified hi behavior:

The first four elements are defined the same as before, except that the number of frames is saved as a
negative value (-3) to indicate that it's a behavior.

The 2nd element (0) means the Roll rotation body angle is 0 (The unit is in degrees). The 3rd element (-30)
means the Pitch rotation body angle is -30 (The unit is in degrees). If the body is tilted from the expected
angles, the balancing algorithm will calculate some adjustments. The 4th element (1) means all the
following all indexed joint angles are real values.

The next three elements define the repeating frames in the sequence: starting frame (1), ending frame (2),
looping cycles (6). So the 1, 2, 6 in the example means the behavior should loop from the 2nd to the 3rd
frame for 6 times (the index starts from 0). The whole behavior array will be executed only once, rather than
looping over like the gait.

For behavior, each frame contains 16 indexed joint angles, and the last 4 elements define the speed of the
transition, and the delay condition after each transition:

1. The first number represents speed factor. The default speed factor is 4, it can be changed to an integer
from 1 (slow) to 127 (fast). The unit is in degrees per step. If it's set to 0, the servo will rotate to the
target angle by its maximal speed (about 0.07sec/60 degrees). It's not recommended to use a value
larger than 10 unless you understand the risks. Here for this example, in the first frame, it is default value
(4).

2. The 2nd number represents delay time. The default delay is 0. It can be set from 0 to 127, the unit is 50
ms. Here for this example, in the first frame, it is 1.

3. The 3rd number represents the trigger axis. If it's not 0, the previous delay time will be ignored. The
trigger of the next frame will depend on the body angle on the corresponding axis. 1 for the pitch axis,
and 2 for the roll axis. The sign of the number defines the direction of the threshold, i.e. if the current
angle is smaller or larger than the trigger angle. Here for this example, in the first frame, it is 0.

4. The 4th number represents the trigger angle. It can be -128 to 127 degrees. Here for this example, in the
first frame, it is 0.

Understand the memory structure

Explanation the locations:

There are two kinds of skills: Instincts and Newbility. The addresses of both are written to the onboard
EEPROM(1KB) as a lookup table, but the actual data is stored at different memory locations:

I2C EEPROM (8KB) stores Instincts.

The Instincts are already fine-tuned/fixed skills. You can compare them to "muscle memory". Multiple
Instincts are linearly written to the I2C EEPROM only once with WriteInstinct.ino. Their addresses are
generated and saved to the lookup table in onboard EEPROM during the runtime of WriteInstinct.ino.

Flash (sharing the 32KB flash with the program) stores Newbility.

A Newbility is any new experimental skill that requires a lot of tests. It's not written to the I2C nor onboard

EEPROM, but the flash memory in the format of PROGMEM. It has to be uploaded as one part of the
Arduino sketch. Its address is also assigned during the runtime of the code, though the value rarely changes
if the total number of skills (including all Instincts and Newbilities) is unchanged.

Explanation the implementation code :

#if !defined(MAIN_SKETCH) || !defined(I2C_EEPROM)1

 //if it's not the main sketch to save data or there's no external EEPROM, 2

 //the list should always contain all information.3

 const char* skillNameWithType[]={"bdFI","bkI","bkLI","bkRI","crFI","crLI","crRI","trFI","4

 const char* progmemPointer[] = {bdF, bk, bkL, bkR, crF, crL, crR, trF, trL, trR, vt, wkF,5

#else //only need to know the pointers to newbilities, because the intuitions have been s6

 //while the newbilities on progmem are assigned to new addresses7

 const char* progmemPointer[] = {zero, };8

#endif9

The first section is active when uploading WriteInstinct.ino. It contains all the skills' data and pointers. The
skill names contain a suffix, "N" or "I" to indicate whether it's a Newbility or Instinct. The Instinct will be
saved to the external I2C EEPROM while the Newbility will be saved to the flash. The address of all the
skills will be saved to the onboard EEPROM.

The second section is active when uploading OpenCat.ino. Because the Instincts are already saved in the
external EEPROM, their data is omitted to save space. The Newbility will be saved to the flash with the
upload so you can update them directly with OpenCat.ino. It's very useful if you are still tuning a new skill.

In the example code, only zero is defined as a Newbility so you don't need to re-upload WriteInstinct.ino for
experiments.

Create a new behavior

What if we want to add more skills with customized names and button assignments?

Serial commands

Could not load image

Keymap on the IR remote

If you want to add more skills, you can refer to the implementation of serial commands (the table above) and
keymap (the figure above) in the program code.

Add an example of a Newbility test and assign it to a button on the IR remote. Upload the skill and call it
with both IR remote and serial monitor.

#if !defined(MAIN_SKETCH) || !defined(I2C_EEPROM)1

//if it's not the main sketch to save data or there's no external EEPROM, 2

//the list should always contain all information.3

const char* skillNameWithType[]={"bdFI","bkI","bkLI","bkRI","crFI","crLI","crRI","trFI","tr4

5

const char* progmemPointer[] = {bdF, bk, bkL, bkR, crF, crL, crR, trF, trL, trR, vt, wkF, w
5

#else //only need to know the pointers to newbilities, because the intuitions have been sav6

//while the newbilities on progmem are assigned to new addresses7

const char* progmemPointer[] = {zero, test};8

#endif9

Modify a few fields of test to make it an Instinct. Call the behavior with the IR remote or serial monitor.

#if !defined(MAIN_SKETCH) || !defined(I2C_EEPROM)1

//if it's not the main sketch to save data or there's no external EEPROM, 2

//the list should always contain all information.3

const char* skillNameWithType[]={"bdFI","bkI","bkLI","bkRI","crFI","crLI","crRI","trFI","tr4

const char* progmemPointer[] = {bdF, bk, bkL, bkR, crF, crL, crR, trF, trL, trR, vt, wkF, w5

#else //only need to know the pointers to newbilities, because the intuitions have been sav6

//while the newbilities on progmem are assigned to new addresses7

const char* progmemPointer[] = {zero, };8

#endif9

Remember to add 1 to the number of skills at the beginning of the header file.

Then you can call this test by entering ktest in the serial monitor. You can also call it from the IR remote if
you replace a button definition in OpenCat.h.

Tune skills in realtime

You need to understand the above structure to store a skill on the robot. However, when tuning the skills,
things can be easier. To do this, you can connect your computer with the robot through the USB or Bluetooth
connector. Then you can send string commands that define the joint angles. The program on the NyBoard
will listen and perform the instructions in real-time. In the SerialMaster folder, you can find the ArdSerial.py to
play the role of Arduino IDE's serial monitor, but with the ability to write more logic and controls within the
script.

� Supporting Application and Software

Programming Language Support

Coding can be done in C-style language with the . Arduino IDE

Python API for sending serial commands

Bittle can be programmed with a Scratch-like web-based IDE and Codecraft curriculum

3rd-Party Code & Robots - Open-source Robot Controller App -

 can control a few open source Robots, include Bittle.The Code & Robots iOS app

Please check out the following video for the app configuration to support controlling Bittle.

code & robots configuration.mp4 4MB

Binary

Code & Robots app configuration for supporting Bittle

3rd-party Open-source Projects

Inverse Kinematic Model OpenCat

a discussion thread

 - a web interface to control Opencat-based robotsOpenCatWeb

need to mount a Raspberry Pi

 by the author leukippa discussion thread

FAQ(Frequently Asked Questions)

Do you have any curriculum?

Our partner TinkerGen provides a which can be used with its a Scratch-like web-based IDE
.

curriculum
Codecraft

https://www.arduino.cc/en/software
https://github.com/PetoiCamp/OpenCat/tree/main/serialMaster
http://ide.tinkergen.com/
https://www.yuque.com/tinkergen-help-en/bittle_course
http://www.codeandrobots.com/
https://github.com/ger01d/kinematic-model-opencat
https://www.petoi.com/forum/software/kinematic-model-of-nybble-and-bittle
https://github.com/leukipp/OpenCatWeb
https://www.petoi.com/forum/software/web-api-to-control-nybble-opencatweb
https://www.yuque.com/tinkergen-help-en/bittle_course
http://ide.tinkergen.com/

What do different sounds from the board mean?

How can I easily install the springs into the upper legs of Bittle?

Please check out discussing installing springs with varies tools.the forum post

Useful links

https://www.petoi.com/forum/basic-assembly-and-setup/just-got-my-bittle-kit-can-t-install-springs

