
44716

TETRIX® PRIZM® Robotics Controller
Programming Guide

Content advising by Paul Uttley, Pamela Scifers, Tim Lankford, Nevin Jones, and Bill Holden.

Build creation and SolidWorks® Composer™ and KeyShot® renderings by Tim Lankford, Brian Eckelberry, and Jason Redd.
Desktop publishing by Todd McGeorge.

©2018 Pitsco, Inc., 915 E. Jefferson, Pittsburg, KS 66762

All rights reserved. This product and related documentation are protected by copyright and are distributed under licenses
restricting their use, copying, and distribution. No part of this product or related documentation may be reproduced in any
form by any means without prior written authorization of Pitsco, Inc.

All other product names mentioned herein might be the trademarks of their respective owners.

Check Pitsco.com for PDF updates of this guide.

V1.2
08/18
44716

WARNING
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may
not cause harmful interference, and (2) this device must accept any interference received, including interference that may
cause undesired operation.

Table of Contents
TETRIX® PRIZM® Robotics Controller Introduction ..2

PRIZM Controller Technology Overview ..3

PRIZM Setup ...5

Software Overview ...8

Software Setup ...9

Getting Started Activities
 Activity 1: Hello World! ...15

 Activity 2: Moving Your DC Motors...19

 Activity 3: Moving Your Servo Motors ...22

 Activity 4: Introduction to the Line Finder Sensor ...25

 Activity 5: Introduction to the Ultrasonic Sensor ...29

Building and Coding the PRIZM TaskBot
 Hardware Overview ..36

 Activity 6: Build the TaskBot ..51

 Activity 7: Drive Forward ...84

 Activity 8: Drive in a Circle ..87

 Activity 9: Drive in a Square ...90

 Activity 10: Simplify the Square ...93

 Building Interlude: Make the TaskBot Smart! ...96

 Activity 11: Drive to a Line and Stop ... 102

 Activity 12: Follow a Line ... 105

 Activity 13: Drive Toward a Wall and Stop .. 108

 Activity 14: Avoiding Obstacles .. 111

 Building Interlude: Give the TaskBot Attitude! ... 114

 Activity 15: Combining the Sensors .. 120

 Build, Code, Test, Learn . . . Go! .. 123

Appendix
 TETRIX PRIZM Robotics Controller Technical Specifications ... 124

 PRIZM Controller Component Overview and Pinout Diagrams ... 126

 TETRIX PRIZM Arduino Library Functions ... 133

 TETRIX PRIZM Arduino Library Functions Chart .. 146

 TETRIX PRIZM Arduino Library Functions Cheat Sheet ... 153

 TETRIX PRIZM Sample Code Library.. 154

44716

Welcome, Coders, Roboticists,
Engineers, Students, Teachers,

Mentors, and Coaches,

Happy coding,
building, problem-
solving, engineering,
and collaborating!

Pitsco Education is pleased to bring you the TETRIX® PRIZM® Robotics Controller Programming Guide –
an exciting and progressive series of activities that teaches the essentials of learning to program your
TETRIX MAX creations using the PRIZM controller and the Arduino Software (IDE).

This programming guide offers a valuable tool for teaching students and teachers how to use the
PRIZM controller (the brain) and the TETRIX MAX system to build and code smart, precise robots that
are as real-world as it gets. The guide comes with five getting started activities, step-by-step building
instructions for creating a TaskBot, 10 complete TaskBot-oriented lessons, and Hacking the Code
extension activities, making it a great tool for exploring the functionality of the PRIZM controller,
TETRIX hardware components, and Arduino Software (IDE) and offering students a great foundation to
build on.

By combining the plug-and-play PRIZM controller with the intuitive MAX building system and an easy-
to-use, text-based software environment, this solution offers a great entry into teaching and learning
through robotics. The progressive nature of the activities enables robotic creations to come to life
quickly and easily, meaning students can experience instant success and focus more classroom time
on problem-solving and applying their STEM knowledge.

Plus, PRIZM is not just a great tool for teaching programming. It can bring to life lessons on sensors,
power, gear ratios, and more. Even the controller’s clear polycarbonate shield was designed to
maximize educational value – letting users see the inner architecture of the controller.

We have also included some STEM Extensions (concepts beyond the scope of this guide) that can
be covered in each lesson if you choose to do so. These extensions can be incorporated if you have
content knowledge of these concepts or if you can work with other teachers to integrate these
concepts.

We hope this guide offers a great jumping-off point to learning with PRIZM. We cannot wait to see the
innovative projects and robotic creations that result.

2 Getting Started

PRIZM Controller Technology Overview

PRIZM Robotics Controller:
A programmable device that is the brain of a TETRIX MAX robot.

6 standard control servo ports

2 quadrature
encoder input portsBattery connection port

2 DC motor
control
ports

Start
button

Stop/Reset
button

1 motor controller
expansion port

USB
programming

port

1 I2C port

4 digital sensor ports

3 analog
sensor ports

2 continuous
rotation

servo ports

For complete, detailed specifications, please refer to the TETRIX PRIZM Robotics
Controller Technical Specifications located in the appendix on page 124.

Getting Started 3

Ultrasonic Sensor:
Enables a robot to measure
distance to an object and
respond to movement

TorqueNADO® Motor:
12-volt DC motor that features
100 rpm and 700 oz-in. of torque

Standard Servo Motor:
Allows for exact
positioning within a
180-degree range of
motion

Line Finder Sensor:
Enables a robot to follow
a black line on a white
background or vice versa

Powerpole Motor Cable:
Connects the DC motor to
the power source

Continuous Rotation
Servo Motor:
Allows for continuous
direction of movement,
both forward and backward

Sensor:
A device that detects and responds to surrounding environmental factors

Motor:
A machine that produces motion or power for completing work

Motor Shaft Encoder:
Allows you to program the DC motors using
both rotation and degrees.

The TorqueNADO motor comes equipped with
a motor shaft encoder. However, the encoder
will not be used for the activities in this guide.
The four-wire encoder cable can be removed.

Encoder:
A sensing device that converts motion to an electrical signal that is read by the PRIZM controller to determine position,
count, speed, or direction of a DC motor.

Note: The TorqueNADO Motor (44260) is the recommended DC motor the activities
and challenges in this guide. However, other 12 VDC motors can be substituted and
connected to PRIZM using a TETRIX MAX Powerpole Motor Cable (41352).

4 Getting Started

Attaching the Sensors:
To connect a sensor to the PRIZM, plug one
end of the sensor adapter wire into the
sensor. Plug the other end into ports labeled
D2-D5 or A1-A3.

Attaching the DC Motors:
To connect a DC motor to the PRIZM, plug
the black and red Powerpole connectors
from the motor cable into one of the two
motor ports on the PRIZM. Connectors
should be plugged in RED to RED and
BLACK to BLACK for proper operation.

Attaching the Servo Motors:
To connect a standard servo motor to the
PRIZM, plug one end of the servo wire into
servo ports 1-6. To connect a continuous
rotation servo motor to the PRIZM, plug one
end of the servo wire into servo ports labeled
CR1 or CR2.

PRIZM Setup

Getting Started 5

Warning: Do not attempt to use third-party battery packs with the PRIZM
controller. The TETRIX battery packs are equipped with a safety fuse and are
the only packs approved for use with the system. Damage to the product as a
result of doing so will void your warranty.

Downloading and Uploading:
The PRIZM USB port is used for
communication between PRIZM and a
Windows, Mac, or Linux device.

The port enables users to download and
upload data from the computer to the PRIZM
controller.

To upload a program to the PRIZM, plug
the B Connector of the USB cable into the
controller’s USB labeled port and plug the A
Connector into your device.

Powering the PRIZM:
The PRIZM controller is powered by a
TETRIX 12-Volt Rechargeable NiMH Battery
Pack.

Included with the PRIZM controller is an
on/off power switch assembly designed to
connect the battery pack connector to the
PRIZM-style Powerpole battery connection
port.

Instructions for assembling the battery and
on/off kit are included in the Building the
TaskBot activity in this guide.

6 Getting Started

Attaching the Battery to the PRIZM:
To connect the battery pack to the PRIZM,
plug the colored battery connectors into
one of the two battery ports located on the
controller. Connectors should be plugged
RED to RED and BLACK to BLACK for proper
operation. Do not connect in reverse polarity.

The battery pack can be plugged into either
the top or bottom row of the port.

Warning: Do not attempt to connect two battery packs to one PRIZM
controller. Damage and failure will occur if this is attempted. Use only one
battery pack to power the PRIZM system and any extra daisy-chained
expansion controllers.

Getting Started 7

Software Overview
The Arduino Integrated Development Environment (IDE) is open-source software
that compiles code and sends it to the hardware. As a text-based and developer-
friendly software with a huge existing user base, the Arduino Software (IDE) is
supported for a variety of Windows, Macintosh, and Linux devices. This makes the
Arduino Software (IDE) flexible, classroom friendly, and competition ready and offers
all users, even the hobbyist, a low entry and high ceiling. All these factors make it
perfect for beginner and veteran coders alike.

The Arduino Software (IDE) uses a C-based programming language to communicate
with the PRIZM. Within the Arduino Software (IDE) an individual program is referred
to as a sketch. Each of the activities in this guide will involve creating a sketch that
gives instructions to the robot.

For the purposes of this guide, we will focus on the basics of using the Arduino
Software (IDE) as it applies to the PRIZM controller. Working through examples and
hands-on application of code using a small TaskBot constructed with the TETRIX
MAX robotics building system will show you how easy it is to use Arduino with
PRIZM.

Note: This is not meant to
be a complete tutorial on
programming with the Arduino
C-based language. There are many
excellent resources available on
the web to learn more about
advanced programming skills.
If you are interested in such
resources, a good place to start
would be the Arduino website at
www.arduino.cc.

8 Getting Started

Software Setup
The first thing we need to do is install the Arduino Software (IDE). The software can
be found at the Arduino website (www.arduino.cc) for Windows, Macintosh, and
Linux operating systems. From the Arduino homepage, click the Download tab. On
the Download page, select the download for your operating system and follow any
additional instructions.

Installing the PRIZM Controller Arduino Library

Adding custom libraries can expand the usability of the Arduino Software (IDE).
Libraries are collections of code that make it easier to create a program, or, as
Arduino calls it, a sketch. After you have successfully installed the Arduino Software
(IDE), you can add the Arduino PRIZM controller library. The PRIZM controller library
contains special functions written for the TETRIX PRIZM controller. Many, but not all,
of the functions will be explored in our activities.

For a deeper look at all available functions in the PRIZM library, please refer to the
appendix section titled TETRIX PRIZM Arduino Library Functions.

The PRIZM library is distributed as a .zip file: TETRIX_PRIZM.zip. The first step is to
download the PRIZM library from the Pitsco website. We can find the library at
Pitsco.com/TETRIX-PRIZM-Robotics-Controller#downloads.

After the library has been downloaded, there are two ways to install the PRIZM
library into the Arduino Software (IDE).

Importing a .zip Library

One way is to import it using the Arduino Software (IDE) Add .ZIP Library menu
option.

In the Arduino Software (IDE), navigate to Sketch > Include Library. From the drop-
down menu, select Add .ZIP Library (Figure 1).

Figure 1

Note: All instructions and screen
shots used throughout this guide
are based on the 1.6.11 version
of the Arduino Software (IDE).
Instructions and views might
slightly vary based on the platform
and version you are using.

Tip: Figures within this section
show typical installation within
Windows. The look and file
locations within the Mac and Linux
operating systems might vary.

Teacher’s Note:
Depending on your classroom and
IT situation, you might want to
download and install the Arduino
Software (IDE) and the TETRIX
PRIZM Arduino Library on the
computers you and your students
will be using.

It is recommended that you
organize the class into teams of two
to four. It is recommended that you
go through each process before
students do. This will enable you to
have a good understanding of what
student questions might arise and
how to answer those questions.

Getting Started 9

You will be prompted to select the library you would like to add. Navigate to the
location where you saved the TETRIX_PRIZM.zip library file, select it, and open it
(Figure 2).

Return to the Sketch > Include Library menu. You should now see the library at
the bottom of the drop-down menu. It is ready to be used in our sketches; however,
example sketches for the library will not appear in the File > Examples menu until
after the Arduino Software (IDE) has been restarted.

Manual Installation

To install the PRIZM library manually, first close the Arduino Software (IDE)
application. Then, extract the .zip file TETRIX_PRIZM.zip containing the library. After
the folder is extracted, drag or copy the TETRIX_PRIZM folder into the Arduino
libraries folder.

For Windows users, it will likely be called Documents\Arduino\libraries.

For Mac users, it will likely be called Documents/Arduino/libraries.

For Linux users, it will be the libraries folder in the Arduino sketchbook.

Restart the Arduino Software (IDE). Make sure the TETRIX_PRIZM library appears in
the Sketch > Include Library menu of the software.

In addition, several PRIZM sketch examples will now appear in the File > Examples
> TETRIX_PRIZM drop-down menu.

That’s it! We have successfully installed the PRIZM Arduino library.

Figure 2

10 Getting Started

Configuring USB Communication

PRIZM and the Arduino Software (IDE) will communicate with each other through
the computer’s USB port.

Therefore, before we can begin programming, we first need to be sure that the
PRIZM controller is properly set up in the Arduino Software (IDE) for communication
over the USB port.

The easiest way to do this is to first start the Arduino Software (IDE) and navigate to
Tools > Board and select Arduino/Genuino Uno (Figure 3). The PRIZM controller
uses the same processor chip as a genuine Arduino UNO, so this is the board you
will select.

Figure 3

Getting Started 11

Next, without the PRIZM connected, navigate to Tools > Port (Figure 4) and check
the current connections. If there are no current connections detected, the word Port
will be grayed out. If there are connections detected, take note of the COM ports
that are listed.

Next, plug the PRIZM controller into a USB port and power it up by connecting the
TETRIX battery pack and turning the power switch on.

Figure 4: Port drop-down menu with PRIZM not connected.
Please note that lists might vary.

12 Getting Started

Navigate to Tools > Port and select the newly installed COM port. The new COM
port will be the PRIZM. By selecting the new COM port, you are telling the Arduino
Software (IDE) to use this port for communications. The COM port you use will likely
be different from the one in Figure 5.

The new port that appears in this example is COM32.

Select the new port item to tell the Arduino Software (IDE) to use this port for
communications. Our port will likely be different and that is OK. When the
communications port has been set up, communications with the PRIZM controller
have been enabled and coding can begin.

When this step is complete, our computer system will automatically default to
this selected port each time we plug in our PRIZM controller and start the Arduino
Software (IDE).

With power applied, the blue power indicator LED will be lit. Be sure to give the
PRIZM controller time to complete the first-time connect installation. This could
take 5-10 seconds. After the PRIZM has been connected and installed, it will be
assigned a COM port by the computer system.

Figure 5: Port drop-down menu after PRIZM is
connected to USB port and powered on.

Tip: Each PRIZM unit will use a
different COM port on the same
computer. For each new PRIZM
that is connected, follow the
steps for numbering controllers
and matching to the computer
as detailed above. One potential
way around this issue is to number
each PRIZM controller and assign
it to a corresponding computer.
This will facilitate the computer
selecting the correct port for
PRIZM each time it is connected
and powered up.

Getting Started 13

Getting Started Activities
Now, it is time to get started with the activities. Each of the five getting started
activities is designed to introduce you to the Arduino Software (IDE) and how it
works with the PRIZM and select basic hardware. Success with these first five
activities will demonstrate how easy it is to use Arduino Software (IDE) with the
PRIZM and prepare you for coding the PRIZM TaskBot.

The Arduino Sketch

As we begin creating our first sketch, it is necessary to understand some basic rules
about sketches. It is best to think of a sketch as a list of instructions to be carried out
in the order that they are written down. Each sketch will have several instructions,
and typically each instruction will be one line of text within the sketch. Lines of text
within a sketch are also known as code, which is why programming is sometimes
called coding.

Most of the rules that affect text-based programming are known as syntax, which is
similar to grammar and punctuation in English.

For instance, each line of code must end with a semicolon just like a period marks
the end of a sentence. As we come across more coding rules in the activities, we will
make sure to explain them.

Many times the best way to learn how to code is by following an example. In the
following sections we will work through several coding examples to better explain
how to create sketches and upload them to the PRIZM controller.

An example sketch of each function can be found in the File > Examples >
TETRIX_PRIZM drop-down menu.

Note: In addition to the PRIZM
library, there is an entire collection
of Arduino language commands
that are necessary to understand
before we can create functional
programs. The Arduino language
reference as well as numerous
language learning tutorials can
be found by visiting the Arduino
homepage at
www.arduino.cc.

Note: If you are already
comfortable with coding in
Arduino sketches and want to
jump ahead, an overview of each
library function can still be a
helpful starting point. We have
created and included definitions
of the functions along with
descriptions that show how each
would appear in an Arduino
sketch. You can find these in the
appendix of this guide on pages
133-145. More library functions
might be added in the future as
the library is updated to newer
versions.

14 Getting Started Activities

Activity 1: Hello World!
Let’s begin with a very simple sketch that will blink the onboard PRIZM red LED. This
activity will be the PRIZM equivalent of a Hello World! program, which is usually
the intro activity for any beginning programmer. The sketch we will create is one of
the simplest and most basic PRIZM functions and requires only the PRIZM, a power
source, and a USB connection to the computer.

Parts Needed

• PRIZM controller

• USB cable

• A charged TETRIX 12-Volt
Rechargeable NiMH Battery Pack

• PRIZM Controller On/Off Battery
Switch Adapter

• Computer

Figure 6

Opening the Sketch

Let’s start by looking at our first example sketch. Open the sketch by selecting File >
Examples > TETRIX_PRIZM > GettingStarted_Act1_Blink_RedLED. A new sketch
window will open titled GettingStarted_Act1_Blink_RedLED (Figure 6).

Getting Started Activities 15

Building the Knowledge Base

Before we can upload the sketch to the PRIZM, we need to make sure the PRIZM
has power, is connected to the computer, and is detected by the computer (Figure
7). When the PRIZM is connected as shown, power on the PRIZM with the on/off
switch. You will know the PRIZM has power by the glowing blue light. To see if the
PRIZM is detected by the computer, check the port as we did in the Configuring
USB Communication section.

As the data uploads, the yellow LEDs to the side of the USB connection will flash.
When the upload is finished, there will be a solid green LED beside the red Reset
button. The green LED means the code is ready to execute. Press Start to execute
the code. The red LED next to the Reset button will blink off and on in one-second
intervals. To stop the program, press the Reset button.

Congratulations! You have successfully uploaded your first sketch to the PRIZM and
demonstrated the results to the world.

Executing the Code

To upload the sketch to the PRIZM, click Upload (Figure 8).

Figure 7

Figure 8

16 Getting Started Activities

Real-World Connection

Many things within the electronic world around us blink, such as caution lights for
road construction warnings, waffle irons (the blinking light turns solid when the
waffles are ready), or notifications on our phones indicating that we have incoming
calls. The rate at which these items blink – or when they blink – is controlled by
electronics. This control can be from simple timing circuits – or it can be from
computers or other devices with microprocessor chips.

STEM Extensions

Science

• Electricity terms (voltage, current, and resistance)

• How an LED works

• What determines the color of an LED

Technology

• How computers work

• How computers are programmed

Engineering

• Problem-solving process

Math

• Frequency

• Duration

• Sequence

Moving Forward

For more detailed information about the sketch process and the PRIZM library
functions involved in blinking the LED, refer to the following sections within the
appendix: TETRIX PRIZM Arduino Library Functions:

• Page 133 about include statements

• Page 134 about initialization functions

• Page 136 about the Start button

• Page 137 about onboard LEDs

For now, let’s change some parameters in our code and see how it affects the
behavior of the red LED. According to the comments in the example, the delay
function defines the duration the LED is on or off. This is a parameter we can
change in our code. Experiment with changing those values to create new blinking
behaviors for the LED. Try making the LED blink faster or slower.

Tip: Remember that you can print
and use the TETRIX PRIZM Arduino
Library Functions Cheat Sheet
within the appendix on page 153
as a quick reference for all the
functions available to you.

Tip: Want to see this in action? You
can by watching our RoboBench
video series for the PRIZM
Programming Guide. You can find
the entire series at video.pitsco.
com/TETRIX or on the Pitsco
YouTube channel.

Getting Started Activities 17

Hacking the Code Activity

With the example as a reference, try creating the blinking LED in a new sketch.
Instead of just blinking the red LED, try to blink the green LED too. Flashing or
blinking lights have a rich tradition as a method of signaling or long-distance
communication. You could challenge yourself to communicate “Hello World!” in
blinking Morse code.

To start a new sketch, select File > New. Be sure to use the appendix: TETRIX PRIZM
Arduino Library Functions in the back of the guide for help with sketch structure
and syntax. An example library of code can also be found in the appendix for those
that need extra help. Do not forget to use basic software skills such as copy and
paste.

When creating your own sketch, there is a built-in software tool to help ensure your
code is free of syntax errors. You can check your syntax by clicking Verify (Figure 9).
This will cause the code to compile but not upload. You will be prompted to save
your sketch before verification.

If there are errors in the code, they will be displayed in the compiler error window at
the bottom of the sketch window (Figure 10).

Errors will need to be corrected before code can be uploaded to the PRIZM
controller. If there are no errors, the compiler will complete and indicate that it is
done compiling, and you can upload your code.

Figure 10

Figure 9

Tip: In the sketch window the
PRIZM library functions change
color when they are typed or
spelled correctly. Consequently,
if spelled incorrectly they will not
change. In Arduino, the PRIZM
functions are recognized by the
software as keywords and will turn
orange when the syntax is correct.

Tip: An example library of code
to help you get started with
this challenge can be found
in the appendix. If you have a
digital copy of this guide, you
can simply copy and paste the
sample code for each activity into
your sketch window. A digital
download can be found at Pitsco.
com/TETRIX-PRIZM-Robotics-
Controller#downloads.

18 Getting Started Activities

Activity 2: Moving Your DC Motors
For our second activity we want to keep things simple but add an element of
motion. We will create a sketch that will rotate a TETRIX DC motor.

Parts Needed

• TETRIX DC motor

• PRIZM controller

• USB cable

• A charged TETRIX 12-Volt
Rechargeable NiMH Battery Pack

• PRIZM Controller On/Off Battery
Switch Adapter

• Computer

Figure 11

Opening the Sketch

Before we open our next example sketch, be sure to save any sketch you want to
reference later. Open the sketch by selecting File > Examples > TETRIX_PRIZM
> GettingStarted_Act2_Move_DCMotor. A new sketch window will open titled
GettingStarted_Act2_Move_DCMotor (Figure 11).

Getting Started Activities 19

Building the Knowledge Base

In this second sketch we want to take a closer look at the sketch syntax, specifically
comments. Comments are lines in the program that are used to inform yourself or
others about the way the program works. They are for informational purposes only
and do not affect the code.

There are two types of comments: single line and multiline. Single-line comments
are preceded by // and anything after // is a comment to the end of the line.
Multiline comments are preceded by /* and can be several lines long but must be
closed with */.

When you look at this second sketch, the comments explain how the sketch author
intended this program to work. The intent of this sketch is to spin the DC motor
channel 1 for five seconds and then coast to a stop. After two seconds of coasting,
the motor will spin in the opposite direction. This behavior will continue until the
red Reset button is pressed.

Executing the Code

Before we can upload the sketch to the PRIZM, remember to check our connections.
Keep in mind that we added a new connection with the motor.

Upload the sketch. The green LED will light up, indicating that the code is ready
to execute. When this has happened, press the green Start button on the PRIZM
controller.

Observe the direction and duration of the motor rotation. Based on the sketch
comments, did the behavior match expectations?

Press the red Reset button when you are ready to stop the motor.

20 Getting Started Activities

Moving Forward

The function used in this sketch is prizm.setMotorPower. It has two parameters:
motor channel and motor power. In the example, prizm.setMotorPower(1,25)
means motor 1 will spin at 25% power clockwise. The first value in parentheses
defines the motor channel, and the second value in parentheses defines power
percentage and direction.

We can alter the direction and stopping behavior by changing the second value in
parentheses. If the second value is negative, the motor rotates counterclockwise,
as shown in the sketch. If we change the value to 125 instead of 0, the stopping
behavior will change from coast to brake.

For more detailed information about the sketch process and the PRIZM library
functions involved in moving the motor, refer to the following section within the
appendix: TETRIX PRIZM Arduino Library Functions:

• Pages 137-142 about DC motor functions

Practice changing the parameters in the sketch. We can change the motor power,
motor direction, stopping behavior, and delay between functions. Observe the
effect these changes have on the motor.

Real-World Connection

Controlling motors is not a new thing. Controlling them by an onboard computer
in an electric car (such as a Tesla) at 70 mph down the road or during a sharp turn
on a curvy highway – that is new! For these cars that are driven by electric motors,
the speed and power levels of all the drive motors must be coordinated to make
the turn in the highway as the driver is turning the steering wheel. All this has been
programmed into the brains of these cars to make it simple and easy for the driver.

STEM Extensions

Science

• How DC motors work

• Angular velocity

Technology

• Relationship between power, voltage, and current

• Torque

Engineering

• Determining load and torque

Math

• Pulse width modulation (PWM)

• Revolutions per minute (rpm)

Hacking the Code Activity

With the example as a reference, try creating a new sketch to move your DC motor.
Remember what we learned from our first activity and think of creative ways to
include blinking LEDs with your rotating motor.

Be sure to use the appendix: TETRIX PRIZM Arduino Library Functions on page 133
for help with sketch structure and syntax.

Tip: In the sketch window the
PRIZM library functions change
color when they are typed or
spelled correctly. Consequently,
if spelled incorrectly they will not
change. In Arduino, the PRIZM
functions are recognized by the
software as keywords and will turn
orange when the syntax is correct.

Tip: An example library of code
to help you get started with
this challenge can be found
in the appendix. If you have a
digital copy of this guide, you
can simply copy and paste the
sample code for each activity into
your sketch window. A digital
download can be found at Pitsco.
com/TETRIX-PRIZM-Robotics-
Controller#downloads.

Tip: Remember that you can print
and use the TETRIX PRIZM Arduino
Library Functions Cheat Sheet
within the appendix on page 153
as a quick reference for all the
functions available to you.

Tip: Want to see this in action? You
can by watching our RoboBench
video series for the PRIZM
Programming Guide. You can find
the entire series at video.pitsco.
com/TETRIX or on the Pitsco
YouTube channel.

Getting Started Activities 21

Activity 3: Moving Your Servo Motors
Our third activity will explore another element of motion with servo motors. We will
create a sketch to rotate a servo motor.

Servo motors offer the benefit of being able to move to a set position regardless
of the start position within a limited range of motion. Servo motors have an
approximate range of motion from 0 to 180 degrees. For example, we can tell
a servo to go to position 45 degrees regardless of where it starts. If it starts at 0
degrees, it will move clockwise to 45 degrees. If it starts at 120 degrees, it will move
counterclockwise to 45 degrees.

Parts Needed

• TETRIX MAX Standard-Scale Servo Motor

• PRIZM controller

• USB cable

• A charged TETRIX 12-Volt Rechargeable
NiMH Battery Pack

• PRIZM Controller On/Off Battery Switch
Adapter

• Computer

Figure 12

Opening the Sketch

Before we open our next example sketch, be sure to save any sketch you want to
reference later.

Open the sketch by selecting File > Examples > TETRIX_PRIZM >
GettingStarted_Act3_Move_Servo. A new sketch window will open titled
GettingStarted_Act3_Move_Servo (Figure 12).

22 Getting Started Activities

Building the Knowledge Base

In this third sketch we want to continue looking at sketch syntax, specifically the
include statement and the object declaration. The include statement is used to
add the functionality of the PRIZM software library into the sketch. The object
declaration is a technique used when writing programs to make them easier to
manage as they grow in size and complexity.

The PRIZM software library is a collection of special mini programs each with its
own distinct function name. These mini programs are designed to make writing
sketches for PRIZM easy and intuitive. By using the include statement, we add
the functionality of the library to our sketch. The include statement for PRIZM is
#include <PRIZM.h>.

The object declaration is an important statement when using the PRIZM controller
along with the PRIZM software library. In order to use the functions contained in
the PRIZM software library, we must first declare a library object name that is then
inserted as a “prefix” before each library function. The object declaration we use is
PRIZM prizm;. We use this statement just after the include statement.

In all of our sketch examples, we use an include statement and object declaration to
add the functionality of the PRIZM software library. Include statements and object
declarations are common for most forms of C-based language.

Executing the Code

Before we can upload the sketch to the PRIZM, remember to check our connections.
Keep in mind that we added a new connection with the servo motor.

Upload the sketch. The green LED will light up, indicating the code is ready to
execute. When this has happened, press the green Start button on the PRIZM
controller.

Observe the direction and duration of the servo motor rotation. Based on the
sketch comments, did the behavior match expectations?

Press the red Reset button when you are ready to stop the motor.

Getting Started Activities 23

Moving Forward

In this sketch we introduce two new PRIZM functions, prizm.setServoSpeed and
prizm.setServoPosition. Both functions have two parameters, but they are different.

The two parameters of the prizm.setServoSpeed function are servo channel and
servo speed. In the example, prizm.setServoSpeed(1,25) means servo 1 will spin at
25% power while it rotates to the position commanded by the
prizm.setServoPosition function. This function needs to be called only once at the
beginning of the program.

The two parameters of the prizm.setServoPosition function are servo channel and
target position. In the example, prizm.setServoPosition(1,180) means servo 1 will
rotate to the target position of 180 degrees.

In the sketch both of these functions work together to tell the servo motor not only
the target position but also the speed to use while moving to the target position.
We can alter the position and speed of the servo by changing the values of both
functions.

For more detailed information about the sketch process and the PRIZM library
functions involved in moving the servo motor, refer to the following section within
the appendix: TETRIX PRIZM Arduino Library Functions:

• Pages 144-145 about servo motor functions

Practice changing the parameters in the sketch. Observe the effect these changes
have on the servo motor.

Real-World Connection

Historically, servo motors were used mostly with a remote-controlled (R/C)
transmitter for R/C model cars to control steering or R/C model airplanes to control
flaps and rudders. Robots can use servos controlled by R/C transmitters – but they
can also use servos controlled by PRIZM to operate robotic arms, grippers, tilting
and rotating mounts for cameras, or many other applications in which precise
movement is needed.

STEM Extensions

Science

• Levers

• Centripetal force

Technology

• Mechanical linkages

• Transmission of force

Engineering

• Applying torque

Math

• Radian vs Cartesian measurements

• Arc length

Hacking the Code Activity

With the example as a reference, try creating a new sketch to move your servo
motor. Remember what we learned from our previous activities and think of
creative ways to combine the functions you have learned.

Tip: In the sketch window the
PRIZM library functions change
color when they are typed or
spelled correctly. Consequently,
if spelled incorrectly they will not
change. In Arduino, the PRIZM
functions are recognized by the
software as keywords and will turn
orange when the syntax is correct.

Tip: An example library of code
to help you get started with
this challenge can be found
in the appendix. If you have a
digital copy of this guide, you
can simply copy and paste the
sample code for each activity into
your sketch window. A digital
download can be found at Pitsco.
com/TETRIX-PRIZM-Robotics-
Controller#downloads.

Tip: Remember that you can print
and use the TETRIX PRIZM Arduino
Library Functions Cheat Sheet
within the appendix on page 153
as a quick reference for all the
functions available to you.

Tip: Want to see this in action? You
can by watching our RoboBench
video series for the PRIZM
Programming Guide. You can find
the entire series at video.pitsco.
com/TETRIX or on the Pitsco
YouTube channel.

24 Getting Started Activities

Opening the Sketch

Before we open our next example sketch, be sure to save any sketch you want to
reference later.

Open the sketch by selecting File > Examples > TETRIX_PRIZM >
GettingStarted_Act4_Intro_LineFinder. A new sketch window will open titled
GettingStarted_Act4_Intro_LineFinder (Figure 14).

Figure 14

Activity 4: Introduction to the Line Finder Sensor
For the fourth activity we will change focus from motor outputs to sensor inputs
by introducing and exploring sensors. In this example we will connect a Line Finder
Sensor to digital sensor port D3, and we will create a sketch to read a digital input
from the Line Finder Sensor.

Sensors enable us to gather information from the world around us. The type of
information depends on the type of sensor. The Line Finder Sensor uses reflected
infrared light to distinguish between light and dark surfaces.

Parts Needed

• Contrasting light and dark surface

• Grove Line Finder Sensor and cable

• PRIZM controller

• USB cable

• A charged TETRIX 12-Volt
Rechargeable NiMH Battery Pack

• PRIZM Controller On/Off Battery
Switch Adapter

• Computer

Figure 13: Contrasting light and dark surface

Getting Started Activities 25

Building the Knowledge Base

For the fourth sketch we want to take a closer look at two of the fundamental
structure elements that make up a sketch. In every sketch you write, there will be a
setup() and a loop() function.

The setup() function follows right after the include statement and object
declaration as part of the beginning of our code. The setup() function contains
items that need to be run only once as part of the sketch. Many functions can
go here, but we always use at least the PRIZM initialization statement, prizm.
PrizmBegin(). The main purpose of this function is to configure the Start button.

The loop() function does exactly what its name suggests. Everything contained
within the brackets of the loop will repeat consecutively until the sketch is ended
with a command or the Reset button. The loop() contains the main body of our
code.

The contents of the setup() and the loop() are contained between curly braces.
A left curly brace { begins a group of statements, and a right curly brace } ends
a group of statements. They can be thought of as bookends, and the code in
between is said to be a block of code.

26 Getting Started Activities

Executing the Code

Before we can upload the sketch to the PRIZM, remember to check our connections.
Keep in mind that we added a new connection in digital sensor port 3 with the Line
Finder Sensor.

Upload the sketch. The green LED will light up indicating the code is ready to
execute. When this has happened, press the green Start button on the PRIZM
controller.

Hold the sensor over the contrasting surface. As the sensor moves from light
to dark, observe the red LED on the PRIZM. When the sensor is over a line, non-
reflective, or dark surface, the red LED will be off. When the sensor is over a white or
reflective surface, the red LED will be on.

Press the red Reset button when you are ready to stop the sensor.

Moving Forward

This sketch introduces a program structure, a new function, and a comparison
statement. The program structure is an “if” statement, the new function is
prizm.readLineSensor, and the comparison statement is == (equal to).

The basic “if” statement enables us to test for a certain condition. If this condition is
met, then the program can perform an action. If the statement in the parentheses
is true, the statements within brackets are run; if the statement is not true, the
program will skip over the code.

The function prizm.readLineSensor reads the state of the Line Finder Sensor
and returns a value of “1” (HIGH) or “0” (LOW). A value of “1” is returned when the
Line Finder Sensor detects a dark line or a non-reflective surface; a value of “0” is
returned when the Line Finder Sensor detects a white or reflective surface.

The comparison statement == (equal to) defines a type of test.

When these three elements are combined in the sketch, we create a test condition
based on the input of the Line Finder Sensor that turns the red LED on or off. In
simple terms, if the Line Finder Sensor detects a line or a non-reflective surface,
then it turns the red LED off. If the Line Finder Sensor detects a white or reflective
surface, it turns the LED on.

For more detailed information about the sketch process and the PRIZM library
functions involved in using the Line Finder Sensor, refer to the following section
within the appendix: TETRIX PRIZM Arduino Library Functions:

• Pages 134-135 about sensor port functions

Experiment with the Line Finder Sensor on different surfaces and different heights
to see how the sensor reacts.

Tip: Remember that you can print
and use the TETRIX PRIZM Arduino
Library Functions Cheat Sheet
within the appendix on page 153
as a quick reference for all the
functions available to you.

Note: The Line Finder Sensor
has an adjustable range that we
can tweak by turning the small
adjustment screw on the back side
of the sensor board.

Tip: Want to see this in action? You
can by watching our RoboBench
video series for the PRIZM
Programming Guide. You can find
the entire series at video.pitsco.
com/TETRIX or on the Pitsco
YouTube channel.

Getting Started Activities 27

Real-World Connection

Finding our way in this world can be challenging. Telling a robot how to find its
way can be challenging as well. One way that robots within a warehouse can find
their way to the right location is by having them follow lines. But to follow lines,
they have to detect the lines. One way to accomplish this is by using a sensor
that detects dark and light surfaces. This, through the computer code, provides
information to the robot about where the line is. Other code controls the DC
motors to change course if the robot strays from the line.

STEM Extensions

Science

• Light – reflection and absorption

• Electromagnetic spectrum

Technology

• Digital vs analog

• Calibration

Engineering

• Determining an edge location

Math

• Data analysis

Hacking the Code Activity

With the example as a reference, try creating a new sketch to use your Line Finder
Sensor. Remember what we learned from our previous activities, and think of
additional creative actions to perform based on the condition of the Line Finder
Sensor.

Tip: In the sketch window the
PRIZM library functions change
color when they are typed or
spelled correctly. Consequently,
if spelled incorrectly they will not
change. In Arduino, the PRIZM
functions are recognized by the
software as keywords and will turn
orange when the syntax is correct.

Tip: An example library of code
to help you get started with
this challenge can be found
in the appendix. If you have a
digital copy of this guide, you
can simply copy and paste the
sample code for each activity into
your sketch window. A digital
download can be found at Pitsco.
com/TETRIX-PRIZM-Robotics-
Controller#downloads.

28 Getting Started Activities

Activity 5: Introduction to the Ultrasonic Sensor
For the final getting started activity, we will finish up our exploration of sensors
by creating a sketch using the Ultrasonic Sensor. In this activity we will connect an
Ultrasonic Sensor to digital sensor port D3 and display the distance to an object we
place in front of it using the serial monitor window.

Like all sensors, the Ultrasonic Sensor enables us to gather information. For the
Ultrasonic Sensor, the information gathered communicates distance. The sensor
works by sending a sonic pulse burst and then waiting on its return to the sensor
as it is reflected off an object in range. The reflected sonic pulse time period is
measured to determine the distance to the object. The sensor has a measuring
range of approximately 3-400 centimeters.

Parts Needed

• Grove Ultrasonic Sensor and cable

• PRIZM controller

• USB cable

• A charged TETRIX 12-Volt
Rechargeable NiMH Battery Pack

• PRIZM Controller On/Off Battery
Switch Adapter

• Computer

Figure 15

Opening the Sketch

Before we open our next example sketch, be sure to save any sketch you want to
reference later.

Open the sketch by selecting File > Examples > TETRIX_PRIZM >
GettingStarted_Act5_Intro_UltraSonic. A new sketch window will open titled
GettingStarted_Act5_Intro_UltraSonic (Figure 15).

Getting Started Activities 29

Figure 16

Building the Knowledge Base

For our fifth sketch of the getting started activities, we want to look at a useful tool
for viewing data as a dynamic text output. The serial monitor displays serial data
being sent from the PRIZM via the USB connection.

The serial monitor’s value as a tool lies in its ability to display data in real time that
enables you to make better-informed design decisions about robot builds and
programming. It can be used to display data from sensors connected to PRIZM or
to examine any program data collected by the PRIZM – for example, encoder count
data, DC motor current data, or servo position data.

Executing the Code

Before we can upload the sketch to the PRIZM, remember to check our connections.
Keep in mind that we added a new connection in digital sensor port 3 with the
Ultrasonic Sensor.

Upload the sketch. Before we execute the sketch, we need to open the serial
monitor from the sketch window. To open the serial monitor, click the magnifying
glass in the top-right corner of the sketch window (Figure 16).

With the sensor lying flat on the desk pointed up, press the green Start button to
execute the code.

The serial monitor will open in a separate window (Figure 17).

Figure 17

30 Getting Started Activities

Figure 19

Figure 18

Hold an object above the sensor at varying distances and observe the serial
monitor to see the real-time data.

Press the red Reset button when you are ready to stop the sensor.

Moving Forward

This sketch introduces several new functions: Serial.begin(), Serial.print(),
prizm.readSonicSensorCM(), and Serial.println().

Serial.begin() enables the use of serial communication within the sketch. As an
initialization function that needs to be run only once, it belongs in the setup of the
sketch. An important part of Serial.begin() is the speed of communication in bits
per second, which is called baud rate. The default setting for baud rate in the serial
window is 9600, so that is what we use in Serial.begin().

Serial.print() prints data to the serial port as readable text. This can take the
form of dynamic information from another device or static information from the
programmer.

prizm.readSonicSensorCM() reads the state of the Ultrasonic Sensor and returns a
digital value within the designated measurement range. For our sensor, that range
is between approximately 3-400 centimeters. This value should reflect the distance
the Ultrasonic Sensor is from a detectable object.

Serial.println() prints data to the serial port as readable text followed by a built-in
command for a new line.

These four functions might seem complicated, but they actually work together
simply. In this sketch, Serial.begin(9600) enables and defines the speed of
communication in the setup. Serial.print() tells what type of data to print.
prizm.readSonicSensorCM() provides the type of data to print because it is within
the parentheses of Serial.print(). And Serial.println(“ Centimeters”) clarifies the type
of data being printed – in this case, with the modifier “ Centimeters.”

Tip: Remember that you can print
and use the TETRIX PRIZM Arduino
Library Functions Cheat Sheet
within the appendix on page 153
as a quick reference for all the
functions available to you.

Tip: Want to see this in action? You
can by watching our RoboBench
video series for the PRIZM
Programming Guide. You can find
the entire series at video.pitsco.
com/TETRIX or on the Pitsco
YouTube channel.

Getting Started Activities 31

For more detailed information about the sketch process and the PRIZM library
functions involved in using the Ultrasonic Sensor and the serial monitor, refer to
www.arduino.cc and the appendix: TETRIX PRIZM Arduino Library Functions:

• Pages 134-135 about sensor port functions

Real-World Connection

When you were very, very young, you were probably scanned by an ultrasonic
sensor. If you do not remember this, it is because it was prior to you being born.
One of the great applications of ultrasonic technology is within the medical field.
Doctors can use the reflection of sound waves back to sensor waves to see inside
a living person. Doctors can see a baby’s size and development – and determine
when they think he or she might be born!

STEM Extensions

Science

• Sound wave terminology (frequency, amplitude, crest, trough)

• Reflection of sound waves

Technology

• Measuring frequency

• Sound digitization

Engineering

• Applications of sonic measurements

Math

• Inverse square law

Hacking the Code Activity

With the example as a reference, try creating a new sketch to use the Ultrasonic
Sensor with the serial monitor. Remember what we learned from our previous
activities and experiment with different objects in front of the Ultrasonic Sensor to
see if they are detectable and if the distances can be measured accurately.

Try changing the code for prizm.readSonicSensorCM() to prizm.readSonicSensorIN()
to display the distance from an object in inches. Also be sure to change the Serial.
printIn from “ Centimeters” to “ Inches” so that the unit is correctly labeled in the
serial monitor window. Understanding how to use the Ultrasonic Sensor will give
your robot vision to be able to steer around objects and obstacles.

Tip: In the sketch window the
PRIZM library functions change
color when they are typed or
spelled correctly. Consequently,
if spelled incorrectly they will not
change. In Arduino, the PRIZM
functions are recognized by the
software as keywords and will turn
orange when the syntax is correct.

Tip: An example library of code
to help you get started with
this challenge can be found
in the appendix. If you have a
digital copy of this guide, you
can simply copy and paste the
sample code for each activity into
your sketch window. A digital
download can be found at Pitsco.
com/TETRIX-PRIZM-Robotics-
Controller#downloads.

32 Getting Started Activities

Building and Coding the PRIZM TaskBot
This is what you have been waiting for. It is time to move to the next level. You
have worked hard to learn the basics, and now it is time to apply them to an
actual robot. The next 10 activities will walk us through building a robot, basic
movement, navigation, adding sensors, and more, culminating in an activity
that combines everything. It is about to get exciting.

Getting Started Activities 33

Note: In order to complete the activities shown in this book, you must have the TETRIX MAX Programmable Robotics Set.

Programmable Robotics Set

34 Building and Coding the PRIZM TaskBot

TETRIX MAX Programmable Robotics Set Parts Index

Channels
Part No. Part Name Quantity
39065 TETRIX MAX 32 mm Channel .6
39066 TETRIX MAX 96 mm Channel .4
39067 TETRIX MAX 160 mm Channel .4
39068 TETRIX MAX 288 mm Channel .4

Servos & Hardware
Part No. Part Name Quantity
39060 TETRIX MAX Single Standard-Scale Servo Motor Bracket 1
39593 TETRIX MAX Standard-Scale Pivot Arm with Bearing1
39197 TETRIX MAX Standard-Scale Servo Motor .2
39081 Servo Extension .2
39082 Servo Y Connector .1
41789 TETRIX MAX Standard Servo Mounting Kit2
39280 TETRIX MAX Adjustable Servo Bracket .2

DC Motors & Hardware
Part No. Part Name Quantity
39089 TETRIX MAX Motor Mount .2
44260 TETRIX MAX TorqueNADO Motor .2

Tires & Wheels
Part No. Part Name Quantity
39055 TETRIX MAX 4" Wheel .2
36466 TETRIX MAX 4" Omni Wheel. .2

Battery & Charger
Part No. Part Name Quantity
38009 TETRIX MAX Battery Clip .2
39057 TETRIX MAX 12-volt 3,000 mAh Battery .1
41399 Global NiMH Battery Pack Charger .1

Tools
Part No. Part Name Quantity
36404 4-in-1 Screwdriver .1
38001 TETRIX Wrench Set .2
39104 TETRIX MAX Hex Key Pack .4
40341 Miniature Ball-Point Hex Driver .1
42991 2-in-1 Screwdriver . 1

Plates & Brackets
Part No. Part Name Quantity
39073 TETRIX MAX Flat Building Plate .2
39061 TETRIX MAX Flat Bracket .6
39062 TETRIX MAX L Bracket .6
39281 TETRIX MAX Inside Corner Bracket .6
39270 TETRIX MAX Inside C Connector .6
41790 TETRIX MAX Adjustable Angle Corner Bracket4

Flats
Part No. Part Name Quantity
39274 TETRIX MAX Flat 64 mm x 27 mm .2
39273 TETRIX MAX Flat 96 mm x 27 mm .2
39272 TETRIX MAX Flat 160 mm x 27 mm. .2
39271 TETRIX MAX Flat 288 mm x 27 mm. .2
41791 TETRIX MAX Adjustable Angle Flat Bracket 6

Axles, Hubs, & Spacers
Part No. Part Name Quantity
39079 TETRIX MAX Motor Shaft Hub .2
39172 TETRIX MAX Axle Hub .6
39092 TETRIX MAX Axle Set Collar .6
39088 TETRIX MAX 100 mm Axle .6
39091 TETRIX MAX Bronze Bushing . 24
39090 TETRIX MAX Gear Hub Spacer. .2
39100 TETRIX MAX Axle Spacer 1/8" . 12
39101 TETRIX MAX Axle Spacer 3/8" .6
39387 TETRIX MAX Flat Round Spacer .6

Gearing
Part No. Part Name Quantity
39028 TETRIX MAX Gear 40-Tooth .4
39086 TETRIX MAX Gear 80-Tooth .4

Bars & Angles
Part No. Part Name Quantity
39070 TETRIX MAX 288 mm Flat Bar .2
39072 TETRIX MAX 144 mm Angle .2
39071 TETRIX MAX 288 mm Angle .2

Posts & Standoffs
Part No. Part Name Quantity
39102 TETRIX Stand-Off Post 6-32 x 1" . 12
39103 TETRIX Stand-Off Post 6-32 x 2" . 12
39107 TETRIX Stand-Off Post 6-32 x 32 mm . 12
41253 TETRIX Stand-Off Post 6-32 x 16 mm . 12

Electronics & Control
Part No. Part Name Quantity
43000 TETRIX PRIZM Robotics Controller .1
41352 TETRIX Motor Cable with Powerpoles .2
43169 PRIZM Controller On/Off Battery Switch Adapter1
 43056 Line Finder Sensor Pack . 1
43055 Ultrasonic Sensor Pack .1
40967 3-Foot Type A-B USB Cable .1

Nuts, Screws, & Fasteners
Part No. Part Name Quantity
39094 Kep Nut . 100
39097 Socket Head Cap Screw 6-32 x 1/2" . 100
39098 Socket Head Cap Screw 6-32 x 5/16" . 100
39111 Button Head Cap Screw 3/8" . 50
31902 Zip Tie . 12

Building and Coding the PRIZM TaskBot 35

TETRIX MAX Hardware Components Overview
The following mechanical parts overview includes elements from the TETRIX MAX Programmable Robotics Set.

Channels

TETRIX MAX structural elements are identified by length. For example, a 32 mm channel or a 288 mm flat bar. Use the
inches ruler below to measure stand-off posts and wheels. Use the centimeters ruler at the bottom of this spread to
measure part lengths.

32 mm Channel 39065

96 mm Channel 39066

160 mm Channel 39067

288 mm Channel 39068

Structural Elements

36 Building and Coding the PRIZM TaskBot

Structural Elements

288 mm Flat Bar 39070

144 mm Angle 39072

288 mm Angle 39071

Flat Building Plate 39073

Flat Bracket 39061

L Bracket 39062

Inside Corner Bracket 39281

Inside C Connector 39270

Adjustable Angle Corner Bracket 41790

Building and Coding the PRIZM TaskBot 37

Flat 64 mm x 27 mm 39274

Flat 96 mm x 27 mm 39273

Flat 160 mm x 27 mm 39272

Flat 288 mm x 27 mm 39271

Adjustable Angle Flat Bracket 41791

Flat Round Spacer 39387

Structural Elements

Stand-Off Post 6-32 x 1" 39102

Stand-Off Post 6-32 x 2" 39103

Stand-Off Post 6-32 x 32 mm 39107

Stand-Off Post 6-32 x 16 mm 41253

38 Building and Coding the PRIZM TaskBot

Axle Hub 39172

Motor Shaft Hub 39079

Axle Set Collar 39092

100 mm Axle 39088

Bronze Bushing 39091

Gear Hub Spacer 39090

Axle Spacer 1/8" 39100

Axle Spacer 3/8" 39101

Motion Elements

Gear 40-Tooth 39028

Gear 80-Tooth 39086

Gear 120-Tooth 39085

Building and Coding the PRIZM TaskBot 39

TorqueNADO Motor 44260

Motion Elements

Motor Mount 39089

4" Wheel 39055

 4" Omni Wheel Pack/Assembly 36466

Kep Nut 39094

Socket Head Cap Screw 6-32 x 1/2" 39097

Socket Head Cap Screw 6-32 x 5/16" 39098

Button Head Cap Screw 3/8" 39111

40 Building and Coding the PRIZM TaskBot

Single Standard-Scale Servo Motor Bracket 39060

Standard-Scale Pivot Arm with Bearing 39593

Standard-Scale Servo Motor 39197

Servo Extension 39081

Servo Y Connector 39082

Standard Servo Mounting Kit 41789

Adjustable Servo Bracket 39280

Motion Elements

Building and Coding the PRIZM TaskBot 41

Power, Tools, and Accessories Elements

Battery Clip 38009

12-volt 3,000 mAh Battery 39057

4-in-1 Screwdriver 36404

2-in-1 Screwdriver 42991

Wrench Set 38001

Hex Key Pack 39104

Miniature Ball-Point Hex Driver 40341

Zip Tie 31902

Global NiMH Battery Pack Charger 41399

42 Building and Coding the PRIZM TaskBot

Control Elements

PRIZM Robotics Controller 43000

Motor Cable with Powerpoles 41352

PRIZM Controller On/Off Battery Switch Adapter 43169

3-Foot Type A-B USB Cable 40967

Line Finder Sensor Pack 43056

Ultrasonic Sensor Pack 43055

Building and Coding the PRIZM TaskBot 43

PRIZM Controller Wiring Illustrated

Detail

44 Building and Coding the PRIZM TaskBot

TETRIX MAX Builder’s Guide Setup/Construction Tips
Planning for easy access to fasteners will make the building experience better for everyone involved.

As a general rule, when you create any substructure, it’s a good idea to only snug nuts and screws until you are sure all
elements fit together. Then, go back and tighten everything before moving on to the next step.

1. Channel Placement
A little planning and forethought about how structural elements go together can make your building experience easier,
quicker, and more efficient.

In the figure above, both structures have similar building surfaces to work from but have different accessibility for
fastening the kep nuts on the screws. Easy access is preferred. Avoid difficult access if possible.

Building and Coding the PRIZM TaskBot 45

2. Tool Use
Proper use of the basic tools makes the building process smoother and more enjoyable and saves time.

46 Building and Coding the PRIZM TaskBot

3. Take Advantage of Design Features
Some elements have design features that either make the element function better or fill a specific role. Recognizing those
so you can take full advantage will make your build be stronger, last longer, and function better.

Using the right-length screw for the job will make best
use of your available resources. Use the shortest screw
possible to get the job done, and save the longer screws
for the places where they are necessary.

This is the proper orientation for kep nuts. The self-locking feature of the kep nut should always be against the flat surface
of the structural element, such as in the example on the left. The image on the right is wrong!

Below is a view of both together for comparison.

The orientation of the kep nut on the left is correct.
The orientation of the kep nut on the right is wrong!

While either screw in the image above would
work, the best use of resources would dictate
using the one shown on the right.

Building and Coding the PRIZM TaskBot 47

Axle hubs and motor shaft hubs are often confused because they look alike and they serve the same function but in slightly
different applications.

The difference between the two elements is the size of the inside diameter of the hole in the center of the element. The axle
hub is sized for the axle, while the motor shaft hub is sized for the motor shaft.

While axle hubs can be used only on axles because of size, the motor shaft hub could be incorrectly used on an axle and
cause problems with function and attachment of wheels or gears. The image on the left shows an axle in the center of a
motor shaft hub. Notice the difference in size between the outer diameter of the axle and the inside diameter of the motor
shaft hub. The image on the right shows an axle in the center of the axle hub. Notice the elements are sized correctly to fit
together and function properly.

48 Building and Coding the PRIZM TaskBot

4. Assembly of Specialty Parts

Omni Wheel Setup Parts Needed

2x
4" Omni Wheel Pack/

Assembly 36466

1x
Omni Wheel

Spacer 36466

2x
Bronze Bushing

39091

4x
Button Head Cap
Screw 3/8" 39111

Step 1.0

Step 1.1 (front view) Step 1.1 (back view)

Building and Coding the PRIZM TaskBot 49

Step 1.2 Step 1.3

Tip: To get proper offset of rollers
between the two wheels, remove
screws from Step 1.3 and rotate the
wheel shown in either direction.
Reattach screws.

50 Building and Coding the PRIZM TaskBot

Activity 6: Build the TaskBot
We need a robot. Because the focus of this guide is on working with PRIZM and the
Arduino Software (IDE), we do not need a complicated robot. With that in mind, we
created the PRIZM TaskBot. The TaskBot is meant to be simple, easy to build, and
exactly what we need for the purposes of this guide without any unnecessary parts.
That being said, everything you learn with this basic bot can be transferred to a
more complicated bot as you continue on your robotics journey.

The TaskBot uses two 12-volt motors mounted back to back for a good example of a
differential-drive robot. Two omni wheel assemblies on the opposite end combined
with the maneuverable drive make a perfect test vehicle for our work with PRIZM.
We will start with a basic drive frame and add more to it in later activities.

This build should be perfect for students who have little to no experience with
metal-based building systems.

Building Time Expectations
45-55 minutes

Real-World Connection

The construction of a machine will determine its effectiveness as well as its
durability. Engineers design machines (including robots) for specific purposes. For
instance, a bulldozer is built from very strong and durable materials to be able to
withstand the forces involved in pushing over trees and buildings or digging out
large holes in the ground.

STEM Extensions

Science

• Structure and function

Technology

• Materials

• Fasteners

Engineering

• Machine design

Math

• Measurement

• Modulus

Teacher’s Note: Many factors can
affect building time, including
such things as set organization and
whether the builder has a partner.
The above time is only an estimate
and is based on an individual
builder of average experience
who is comfortable with hands-on
building activities and has access
to complete, well-organized sets.
Actual time might vary.

Building and Coding the PRIZM TaskBot 51

Step 1

Partial assembly should look like this.

Parts Needed

4x
288 mm Channel 39068 8x

Kep Nut 39094

8x
Socket Head Cap Screw

6-32 x 5/16" 39098

Tip: See page 36 for help with identifying channel elements. Remember, channels are identified by length.

52 Building and Coding the PRIZM TaskBot

Step 1.0

Step 1.1

Tip: It’s a good idea to only snug the nuts and
screws until all four channels are connected.

Building and Coding the PRIZM TaskBot 53

Step 1.3

Step 1.2

54 Building and Coding the PRIZM TaskBot

Step 1.4

Rotate build to match this view.

Building and Coding the PRIZM TaskBot 55

Step 1.5

Step 1.6

Tip: After all four channels are connected and
the square frame is created, don’t forget to go
back and tighten all the screws and nuts.

56 Building and Coding the PRIZM TaskBot

Step 2
Parts Needed

8x
Kep Nut
39094

4x
Socket Head Cap Screw

6-32 x 5/16" 39098

4x
Socket Head Cap Screw

6-32 x 1/2" 39097

2x
L Bracket 39062

Partial assembly should look like this.

1x
PRIZM Controller On/Off Battery

Switch Adapter 43169

Building and Coding the PRIZM TaskBot 57

Step 2.0

Rotate build to match this view.

58 Building and Coding the PRIZM TaskBot

Step 2.1

Rotate build to match this view.

Building and Coding the PRIZM TaskBot 59

Step 2.2

Step 2.3

Tip: This step uses Socket Head Cap Screws (39097).

Tip: It does not matter in which direction the on/off power switch is mounted in the plate. It is strictly a matter of personal preference.

60 Building and Coding the PRIZM TaskBot

Step 3

Partial assembly should look like this.

4x
Bronze Bushing 39091

2x
Axle Spacer 1/8" 39100

2x
32 mm Channel

39065

Parts Needed

6x
Kep Nut 39094

6x
Socket Head Cap Screw

6-32 x 5/16" 39098

4x
Axle Set Collar

39092

2x
100 mm Axle

39088

2x
 4" Omni Wheel Pack/Assembly

36466

Building and Coding the PRIZM TaskBot 61

Step 3.0

Step 3.1

62 Building and Coding the PRIZM TaskBot

Step 3.2

Step 3.3

Building and Coding the PRIZM TaskBot 63

Step 3.4

Step 3.5

Tip: Refer to Omni Wheel Setup
on pages 49-50 to see how to
assemble the omni wheel.

64 Building and Coding the PRIZM TaskBot

Step 3.6

Step 3.7

Building and Coding the PRIZM TaskBot 65

Step 3.8

66 Building and Coding the PRIZM TaskBot

Finished assembly should look like this.

Step 4

4x
Kep Nut 39094

8x
Socket Head Cap Screw

6-32 x 1/2" 39097

Parts Needed

2x
4" Wheel 39055

2x
Motor Mount 39089

2x
Motor Shaft Hub 39079

2x
TorqueNADO Motor 44260

Tip: See the setup tips on page 48 for help distinguishing between the motor shaft hub and axle hub.

Building and Coding the PRIZM TaskBot 67

Step 4.0

Step 4.1

Tip: The screw over the split end of the motor mount
holds the motor in position inside the mount. To insert
the motor and move it into position, you must keep the
screw loose. Don’t forget to go back and tighten this
screw after the motor has been inserted and moved into
the desired position.

68 Building and Coding the PRIZM TaskBot

Step 4.2

Step 4.3

Tip: This step uses the Motor Shaft Hub
(39079). Don’t forget to tighten the set screw.

Building and Coding the PRIZM TaskBot 69

Step 4.4

Step 4.5

Tip: The screw over the split end of the motor mount
holds the motor in position inside the mount. To insert
the motor and move it into position, you must keep the
screw loose. Don’t forget to go back and tighten this
screw after the motor has been inserted and moved
into the desired position.

70 Building and Coding the PRIZM TaskBot

Step 4.6

Step 4.7

Building and Coding the PRIZM TaskBot 71

Step 4.8

Step 4.9

Tip: This step uses the Motor Shaft Hub
(39079). Don’t forget to tighten the set screw.

72 Building and Coding the PRIZM TaskBot

Finished assembly should look like this.

Step 5

2x
Battery Clip 38009

Parts Needed

1x
12-volt 3,000 mAh Battery 39057

2x
Flat Building Plate 39073

8x
Stand-Off Post 6-32 x 1"

39102

16x
Socket Head Cap Screw

6-32 x 5/16" 39098

1x
Flat 160 mm x 27 mm

39272

Building and Coding the PRIZM TaskBot 73

Step 5.0

Step 5.1

Tip: This step uses 6-32 x 1" Stand-Off Posts (39102).

74 Building and Coding the PRIZM TaskBot

Step 5.2

Step 5.3

Tip: This step uses 6-32 x 1" Stand-Off Posts (39102).

Building and Coding the PRIZM TaskBot 75

Step 5.4

Step 5.5

76 Building and Coding the PRIZM TaskBot

Finished assembly should look like this.

Step 6
Parts Needed

8x
Socket Head Cap Screw

6-32 x 5/16" 39098

8x
Kep Nut 39094

Building and Coding the PRIZM TaskBot 77

Step 6.0

Step 6.1

78 Building and Coding the PRIZM TaskBot

Step 6.2

Step 6.3

Building and Coding the PRIZM TaskBot 79

Finished assembly should look like this.

Step 7
Parts Needed

1x
PRIZM Robotics Controller

43000

4x
Kep Nut 39094

4x
Socket Head Cap Screw

6-32 x 1/2" 39097

80 Building and Coding the PRIZM TaskBot

Step 7.0

Step 7.1

Building and Coding the PRIZM TaskBot 81

Step 7.2

Step 7.3

82 Building and Coding the PRIZM TaskBot

Finished assembly should look like this.

Building and Coding the PRIZM TaskBot 83

Activity 7: Drive Forward
Activity 7 is the first activity with the TaskBot. We want to start with something
simple. In this activity we will create a sketch to move the TaskBot forward for three
seconds, stop, and end the program.

Building on what we learned in Activity 2, we will add a second motor and have
them work together in unison. Being able to use two motors together in unison is a
fundamental requirement for mobile robots.

Figure 20

Parts Needed

• Fully assembled PRIZM TaskBot

• USB cable

• A charged TETRIX 12-Volt Rechargeable
NiMH Battery Pack

• Computer

Opening the Sketch

Before we open our next example sketch, be sure to save any sketch you want to
reference later.

Open the sketch by selecting File > Examples > TETRIX_PRIZM > TaskBot_
Act7_Drive_Forward. A new sketch window will open titled TaskBot_Act7_Drive_
Forward (Figure 20).

84 Building and Coding the PRIZM TaskBot

Executing the Code

Before we can upload the sketch to the PRIZM, remember to check our connections.

Upload the sketch. The green LED will light up, indicating the code is ready to
execute. When the LED comes on, disconnect the USB cable and set the TaskBot on
the floor.

Press the green Start button to execute the sketch. Observe the direction and
duration of the TaskBot’s motion. Based on the sketch comments, did the behavior
match expectations?

The TaskBot should stop after three seconds.

Moving Forward

This sketch introduces three new functions, prizm.setMotorInvert(),
prizm.setMotorPowers(), and prizm.PrizmEnd().

The prizm.setMotorInvert() enables you to invert the rotational direction of a motor.
When two motors are mounted on opposite sides, this function enables you to give
a single direction command to both motors and have them work together. This
makes your job as a programmer easier. There are two parameters to the function.
The first parameter designates the motor channel, and the second parameter
designates no invert or invert (0 or 1).

The prizm.setMotorPowers() enables you to set the power level of motor 1 and
motor 2 at the same time. The two parameters set the speed for each motor. In this
sketch the motor power for each motor is 50%.

The prizm.PrizmEnd() ends or terminates the sketch.

In this simple sketch all these functions work together so the robot can move
forward for three seconds and then stop. Because we want the motors to always
work together, prizm.setMotorInvert needs to be used only in the setup. The
prizm.setMotorPowers tells both motors to move at 50% power with a single
function. To finish the sketch we use prizm.PrizmEnd() instead of having it loop.

For more detailed information about the sketch process and the PRIZM library
functions involved in using the DC motors, refer to the appendix: TETRIX PRIZM
Arduino Library Functions:

• Pages 137-142 about DC motor functions

Real-World Connection

Trains are a very good example of machines that drive forward. Their drive motors
(usually diesel powered) do not have to be able to rotate independently to turn
corners – they just have to provide forward thrust to get (and keep) the train going.
Occasionally they have to go backward – but they just provide reverse thrust in that
instance.

Tip: Remember that you can print
and use the TETRIX PRIZM Arduino
Library Functions Cheat Sheet
within the appendix on page 153
as a quick reference for all the
functions available to you.

Tip: Want to see this in action? You
can by watching our RoboBench
video series for the PRIZM
Programming Guide. You can find
the entire series at video.pitsco.
com/TETRIX or on the Pitsco
YouTube channel.

Building and Coding the PRIZM TaskBot 85

STEM Extensions

Science

• Rotational kinetic energy

• Rotational torque

Technology

• Direct drive vs geared drive

• DC motor control functions

Engineering

• Differential, skid, and tricycle steering mechanisms

Math

• Clockwise, counterclockwise rotation

• Wheel circumference vs distance traveled per rotation

Hacking the Code Activity

With the example as a reference, try creating a new sketch to move the TaskBot
forward and stop. Remember what we learned from our previous activities and
experiment with trying to make the TaskBot move forward for an amount of time
and then reverse to the same spot.

We have the fundamentals to explore speed because we can measure distance over
time. In our sketch, when we use a specified time, we can physically measure how
far the robot moves. When we change our power parameter, it should affect the
distance traveled in the same time frame.

With that in mind, create a challenge by marking a specified distance on the floor.
Using the data you have collected, program the TaskBot to get as close to the
specified distance as possible without going over.

Tip: In the sketch window the
PRIZM library functions change
color when they are typed or
spelled correctly. Consequently,
if spelled incorrectly they will not
change. In Arduino, the PRIZM
functions are recognized by the
software as keywords and will turn
orange when the syntax is correct.

Tip: Without the use of encoders,
speeds of DC motors using the
power commands can vary
depending on the charge level of
the battery.

Tip: An example library of code
to help you get started with
this challenge can be found
in the appendix. If you have a
digital copy of this guide, you
can simply copy and paste the
sample code for each activity into
your sketch window. A digital
download can be found at Pitsco.
com/TETRIX-PRIZM-Robotics-
Controller#downloads.

86 Building and Coding the PRIZM TaskBot

Activity 8: Drive in a Circle
For our eighth activity we will apply our knowledge of motors to create a new
behavior. While being able to move straight is important, we need to be able to
expand on that and make turns. This activity will have your TaskBot driving in circles
by varying motor power as the motors work in unison.

Parts Needed

• Fully assembled PRIZM TaskBot

• USB cable

• A charged TETRIX 12-Volt Rechargeable
NiMH Battery Pack

• Computer

Figure 21

Opening the Sketch

Before we open our next example sketch, be sure to save any sketch you want to
reference later.

Open the sketch by selecting File > Examples > TETRIX_PRIZM > TaskBot_Act8_
Drive_Circle. A new sketch window will open titled TaskBot_Act8_Drive_Circle
(Figure 21).

Building and Coding the PRIZM TaskBot 87

Before we can upload the sketch to the PRIZM, remember to check our connections.

Upload the sketch. The green LED will light up indicating the code is ready to
execute. When the LED comes on, disconnect the USB cable and set the TaskBot on
the floor.

Press the green Start button to execute the sketch. Observe the direction and
duration of the TaskBot’s motion.

Press the red Reset button to end the sketch. Based on the sketch comments, did
the behavior match expectations?

Moving Forward

While this sketch does not add any new functions, it should lead to a deeper
understanding of how motors work in unison to create a specified behavior.

All the functions in this sketch work together to make the TaskBot move in a circle.
Because we want the motors to always work together, prizm.setMotorInvert needs
to be used only in the setup. The prizm.setMotorPowers tells both motors to move
at different speeds in a single function. One motor is set to 50%, while the other is
set to 25%, resulting in a circular motion.

For more detailed information about the sketch process and the PRIZM library
functions involved in using the DC motors, refer to the appendix: TETRIX PRIZM
Arduino Library Functions:

• Pages 137-142 about DC motor functions

Real-World Connection

If you have ever seen farmland that is watered by sprinkler irrigation systems, you
have likely seen an example of a machine that goes around in a circle. The typical
sprinkler irrigation system has a center pivot point where the water source is
connected, and the beam of the pipe system transports water to sprinkler outlets
down the length of the beam. The beam is supported by wheels every 30 or 40 feet,
and the wheels are powered by electric motors. Because the center pivot of the
system remains in place, as the wheels rotate, they move the entire beam in a circle,
irrigating the farmland as the system goes.

Tip: Remember that you can print
and use the TETRIX PRIZM Arduino
Library Functions Cheat Sheet
within the appendix on page 153
as a quick reference for all the
functions available to you.

Tip: Want to see this in action? You
can by watching our RoboBench
video series for the PRIZM
Programming Guide. You can find
the entire series at video.pitsco.
com/TETRIX or on the Pitsco
YouTube channel.

Tip: You will need about five to six
feet of empty floor space for the
robot to complete the circle.

88 Building and Coding the PRIZM TaskBot

STEM Extensions

Science

• Circular motion

• Tangential motion

Technology

• Motor control and precision

• Problem-solving via coding

Engineering

• Machine design for following geometric paths

Math

• Technical (mathematical) definition of a circle

• Determining radius

Hacking the Code Activity

With the example as a reference, try creating a new sketch to move the TaskBot in
a different-size circle. Remember what we learned from our previous activities and
experiment with different parameters to make the circle diameter larger or smaller.

Challenge yourself to add behaviors. What would it take to make your robot drive in
an oval or a figure eight?

Tip: In the sketch window the
PRIZM library functions change
color when they are typed or
spelled correctly. Consequently,
if spelled incorrectly they will not
change. In Arduino, the PRIZM
functions are recognized by the
software as keywords and will turn
orange when the syntax is correct.

Tip: An example library of code
to help you get started with
this challenge can be found
in the appendix. If you have a
digital copy of this guide, you
can simply copy and paste the
sample code for each activity into
your sketch window. A digital
download can be found at Pitsco.
com/TETRIX-PRIZM-Robotics-
Controller#downloads.

Building and Coding the PRIZM TaskBot 89

Activity 9: Drive in a Square
Now, we will continue to build our navigational skills with the TaskBot by giving our
robot the ability to make 90-degree turns. The ability to make 90-degree turns will
be used to make the TaskBot drive in a square.

Figure 22

Parts Needed

• Fully assembled PRIZM TaskBot

• USB cable

• A charged TETRIX 12-Volt Rechargeable
NiMH Battery Pack

• Computer

Opening the Sketch

Before we open our next example sketch, be sure to save any sketch you want to
reference later.

Open the sketch by selecting File > Examples > TETRIX_PRIZM > TaskBot_Act9_
Drive_Square_1. A new sketch window will open titled TaskBot_Act9_Drive_
Square_1 (Figure 22).

90 Building and Coding the PRIZM TaskBot

Executing the Code

Before we can upload the sketch to the PRIZM, remember to check our connections.

Upload the sketch. The green LED will light up, indicating the code is ready to
execute. When this has occurred, disconnect the USB cable and set the TaskBot on
the floor.

Press the green Start button to execute the sketch. Observe the direction and
duration of the TaskBot’s motion. Based on the sketch comments, did the behavior
match expectations?

Moving Forward

This sketch has a lot to it, but it is made of functions that we have used before. We
have just combined multiple sequential behaviors to create one larger behavior – in
this case, a square.

An important thing to understand about this program is that we are using dead
reckoning to program the robot’s square driving path. Dead reckoning is simply
using time as the basis for controlling a motor. For instance, to make a right-hand
turn, we are commanding the motors to turn on in opposite directions at 50%
power and run for 600 milliseconds.

We estimate that if we spin the motors at a certain rpm for a certain time period,
we should come close to making a 90-degree right turn. However, this is not always
accurate because the amount that our robot’s battery is charged can vary and any
wheel slippage on the surface we are working on will cause errors. In essence we
are dead reckoning on making a right turn.

All the functions in this sketch work together to make the TaskBot move in a square.
Because we want the motors to always work together, prizm.setMotorInvert needs
to be used only in the setup. The prizm.setMotorPowers tells both motors to move
at different speeds in a single function.

For more detailed information about the sketch process and the PRIZM library
functions involved in using the DC motors, refer to the appendix: TETRIX PRIZM
Arduino Library Functions:

• Pages 137-142 about DC motor functions

Real-World Connection

Some vehicles take the same route time after time. For instance, a vehicle for
transporting packages from three different locations to a final destination within
a warehouse could have a route that would look like a square. This vehicle is
programmed to go an exact distance forward before it turns to go that same
distance at a 90-degree angle. After repeating this four times, the vehicle is back
where it started, ready for another cycle of package transport.

Tip: Remember that you can print
and use the TETRIX PRIZM Arduino
Library Functions Cheat Sheet
within the appendix on page 153
as a quick reference for all the
functions available to you.

Tip: This program is one that could
be affected by the charge level
of the battery. Why? The pattern
of this program is generated
by a series of delay functions,
and as motor rpm changes due
to battery levels, the square
pattern can change somewhat
as batteries drain. That is one of
the consequences of using “dead
reckoning” as a method of control.

Tip: Want to see this in action? You
can by watching our RoboBench
video series for the PRIZM
Programming Guide. You can find
the entire series at video.pitsco.
com/TETRIX or on the Pitsco
YouTube channel.

Building and Coding the PRIZM TaskBot 91

STEM Extensions

Science

• Relationship among time, distance, and velocity

Technology

• How time is measured within a microprocessor

• Measuring turning radius

Engineering

• Program design for path following

Math

• Relationship of sides and angles of a square

• Measurement of angles

Hacking the Code Activity

With the example as a reference, try creating a new sketch to move the TaskBot in
a square. Remember what we learned from our previous activities and experiment
with different parameters to make the square larger or smaller.

Challenge yourself to create complex paths beyond a square. Try tracing out some
of the alphabet or navigate through a simple maze using dead reckoning.

Tip: In the sketch window the
PRIZM library functions change
color when they are typed or
spelled correctly. Consequently,
if spelled incorrectly they will not
change. In Arduino, the PRIZM
functions are recognized by the
software as keywords and will turn
orange when the syntax is correct.

Tip: An example library of code
to help you get started with
this challenge can be found
in the appendix. If you have a
digital copy of this guide, you
can simply copy and paste the
sample code for each activity into
your sketch window. A digital
download can be found at Pitsco.
com/TETRIX-PRIZM-Robotics-
Controller#downloads.

Note: Keep this activity in mind.
We will revisit this behavior in the
next activity in order to flex our
coding muscles.

92 Building and Coding the PRIZM TaskBot

Activity 10: Simplify the Square
Remember the square activity we did in Activity 9? For our next activity we want to
show you a more efficient way to code the same behavior.

Figure 23

Parts Needed

• Fully assembled PRIZM TaskBot

• USB cable

• A charged TETRIX 12-Volt Rechargeable
NiMH Battery Pack

• Computer

Opening the Sketch

Before we open our next example sketch, be sure to save any sketch you want to
reference later.

Open the sketch by selecting File > Examples > TETRIX_PRIZM > TaskBot_Act10_
Drive_Square_2. A new sketch window will open titled TaskBot_Act10_Drive_
Square_2 (Figure 23).

Building and Coding the PRIZM TaskBot 93

Executing the Code

Before we can upload the sketch to the PRIZM, remember to check our connections.

Upload the sketch. The green LED will light up, indicating the code is ready to
execute. When this has occurred, disconnect the USB cable and set the TaskBot on
the floor.

Press the green Start button to execute the sketch. Observe the direction and
duration of the TaskBot’s motion. Based on the sketch comments, did the behavior
match expectations?

Moving Forward

This sketch implements one new program structure in the form of the “for”
statement, and it adds a new way to implement functions with called functions.
Both of these will combine to make a simpler, easier-to-read sketch.

The “for” statement is used to repeat a block of code enclosed in curly braces. An
increment counter is used to count the iterations and terminate the loop. The “for”
statement is useful for limiting the number of times a loop will execute.

Called functions occur outside the setup() and loop() functions. They are used most
often when the same action needs to occur multiple times in a sketch.

When we made the TaskBot drive in a square in Activity 9 we listed each action
line by line, resulting in excessive code that looked more complicated than it was.
We can identify specific actions that were repeated several times in the complete
behavior. We can define those identified actions in a called function outside the
loop(). After the called functions are defined outside the loop(), we can use them in
the loop() to simplify the code.

For this sketch we defined a forward() and a rightTurn() outside the loop(). Because
we defined these two functions, we can now call them in the loop(). We start the
loop() with the “for” statement to define how many times we want the loop to
repeat.

There are three parts to the “for” statement. The first part, int x=0, is the
initialization. This will happen first and only once.

The second part, x<=3, is the condition. Each time through the loop(), the condition
is tested. If it is true, the third part, x++, the increment, is executed, and the
condition is tested again. When that condition becomes false, the loop() ends.

In simple terms, the initialization starts the loop(). The condition defines how many
times we want the loop to execute, which is three times plus the first initialization.
The total times the loop() will execute is four. And the increment defines how it
counts each execution of the loop(), which is by one increment.

For more detailed information about the sketch process and the PRIZM library
functions involved in using the DC motors, refer to the appendix: TETRIX PRIZM
Arduino Library Functions:

• Pages 137-142 about DC motor functions

Real-World Connection

In the process of learning to shoot free throws, you try to train your mind and
muscles to repeat a certain set of controlled actions that will cause the basketball
to go through the hoop. Repeatability, or the ability to consistently repeat an
operation with little or no variation in the results, is critical in many sports but is also
critical in robot design and coding. Determining a method (or code) to have a robot
precisely follow a square pattern provides evidence that the robot can perform a
repetitive action with little or no variation.

Tip: Remember that you can print
and use the TETRIX PRIZM Arduino
Library Functions Cheat Sheet
within the appendix on page 153
as a quick reference for all the
functions available to you.

Tip: Want to see this in action? You
can by watching our RoboBench
video series for the PRIZM
Programming Guide. You can find
the entire series at video.pitsco.
com/TETRIX or on the Pitsco
YouTube channel.

Tip: A function can be defined in
one area of your sketch and then
referenced, or “called,” in another
area. This creates subroutines that
help keep your sketch concise.

94 Building and Coding the PRIZM TaskBot

STEM Extensions

Science

• Relationship between time, distance, and velocity

Technology

• How time is measured within a microprocessor

• Measuring turning radius

Engineering

• Program design for path following

Math

• Relationship of sides and angles of a square

• Measurement of angles

Hacking the Code Activity

With the example as a reference, try creating a new sketch to move the TaskBot
in a square using the “for” statement and called functions. Or for an additional
challenge, create complex paths beyond a square such as rectangles or hexagons.

Remember what we learned from our previous activities. The challenge from
here is to move forward with your own unique robot builds and apply the coding
knowledge you have learned in new and exciting ways.

Tip: In the sketch window the
PRIZM library functions change
color when they are typed or
spelled correctly. Consequently,
if spelled incorrectly they will not
change. In Arduino, the PRIZM
functions are recognized by the
software as keywords and will turn
orange when the syntax is correct.

Tip: An example library of code
to help you get started with
this challenge can be found
in the appendix. If you have a
digital copy of this guide, you
can simply copy and paste the
sample code for each activity into
your sketch window. A digital
download can be found at Pitsco.
com/TETRIX-PRIZM-Robotics-
Controller#downloads.

Building and Coding the PRIZM TaskBot 95

Building Interlude: Make the TaskBot Smart!
Up until now our robot has been good at following instructions, but it has not been
able to make any decisions. We know from the getting started activities that sensors
enable robots to sense the environment around them. We can give robots the
ability to make decisions based on the information that sensors provide, thereby
appearing smart.

In the next coding examples, we will attach sensors to the PRIZM TaskBot. We will
work though two examples using the Line Finder Sensor and two examples using
the Ultrasonic Sensor. Instructions for attaching sensors to the PRIZM TaskBot are
shown below.

Finished assembly should look like this.

Parts Needed

4x
Stand-Off Post

6-32 x 32 mm 39107

2x
Kep Nut
39094

2x
Socket Head Cap Screw

6-32 x 5/16" 39098

6x
Socket Head Cap Screw

6-32 x 1/2" 39097

1x
L Bracket 39062

1x
Flat Bracket 39061

1x
Line Finder Sensor Pack 43056

1x
Ultrasonic Sensor Pack 43055

Step 1

96 Building and Coding the PRIZM TaskBot

Step 1.0

Step 1.1

Tip: This step uses 6-32 x 32 mm
Stand-Off Posts (39107).

Tip: This step uses 6-32 x 32 mm
Stand-Off Posts (39107).

Building and Coding the PRIZM TaskBot 97

Step 1.2

Step 1.3

98 Building and Coding the PRIZM TaskBot

Step 1.4

Step 1.5

Building and Coding the PRIZM TaskBot 99

Finished assembly should look like this.

Step 2
Parts Needed

2x
Socket Head Cap Screw

6-32 x 5/16" 39098

100 Building and Coding the PRIZM TaskBot

Step 2.0

Building and Coding the PRIZM TaskBot 101

Figure 24

Opening the Sketch

Before we open our next example sketch, be sure to save any sketch you want to
reference later.

Open the sketch by selecting File > Examples > TETRIX_PRIZM > TaskBot_Act11_
Drive_To_Line. A new sketch window will open titled TaskBot_Act11_Drive_To_
Line (Figure 24).

Activity 11: Drive to a Line and Stop
Starting simple like we have in all of our activities, we will begin by adding the Line
Finder Sensor to a basic move forward behavior. This will enable the TaskBot to stop
based on the environment around it. In this activity the TaskBot will drive forward
and stop at a line.

Parts Needed

• Contrasting light and dark surface

• Fully assembled PRIZM TaskBot
complete with sensor module

• USB cable

• A charged TETRIX 12-Volt
Rechargeable NiMH Battery Pack

• Computer

102 Building and Coding the PRIZM TaskBot

Executing the Code

Before we can upload the sketch to the PRIZM, remember to check our connections.
The Line Finder Sensor should be in digital sensor port 3.

Upload the sketch. The green LED will light up, indicating the code is ready to
execute. When this has occurred, disconnect the USB cable and set the TaskBot on
the floor.

The TaskBot should be on a white or reflective surface pointed toward a black line
or non-reflective surface approximately 36 inches or one meter away.

Press the green Start button to execute the sketch. Observe the behavior of the
robot. Press the red Reset button to end the sketch. Based on the sketch comments,
did the behavior match expectations?

Distance of 1 meter or
roughly 36 inches

Tip: Remember that you can print
and use the TETRIX PRIZM Arduino
Library Functions Cheat Sheet
within the appendix on page 153
as a quick reference for all the
functions available to you.

Tip: Want to see this in action? You
can by watching our RoboBench
video series for the PRIZM
Programming Guide. You can find
the entire series at video.pitsco.
com/TETRIX or on the Pitsco
YouTube channel.

Tip: Be sure to check that the Line
Finder Sensor is plugged into the
correct sensor port and that it is
adjusted properly to sense the line.
Some height adjustment might be
needed, or the small adjustment
screw on the back side of the
sensor module might need to be
tweaked. To see if the sensor is
working properly, manually move
the robot back and forth over the
black line and white surface. The
red LED on the Line Finder Sensor
should be on when the sensor
is over the white surface and off
when it is over the black line.

Building and Coding the PRIZM TaskBot 103

Moving Forward

This sketch uses two “if” statements, a program structure we used in Activity 4, and
it introduces a “while” loop, which is a new program structure.

A “while” loop looks at a test condition inside parentheses and will loop continually
until the test condition inside the parentheses becomes false.

In this sketch the “if” statements are looking at the condition of the Line Finder
Sensor. The first “if” statement tells the TaskBot to move at 35% power when over
a white or reflective surface. The second “if” statement contains two parts. The first
part tells the TaskBot to brake when over a black line or non-reflective surface. The
second part contains the “while” loop that locks the sketch into blinking the red LED
until the sketch is reset.

For more detailed information about the sketch process and the PRIZM library
functions involved in using the DC motors, refer to www.arduino.cc and the
appendix: TETRIX PRIZM Arduino Library Functions:

• Pages 134-135 about sensor port functions

• Pages 137-142 about DC motor functions

Real-World Connection

For people who drive cars, pulling up to an intersection with a crosswalk is a
common occurrence. For the safety of any pedestrians, you need to stop your car at
or before that crosswalk. After some experience this becomes second nature to you
as a driver. However, robots do not learn in the same manner as humans, so they
have to have automated devices and sensors to know when and where to stop.

STEM Extensions

Science

• Velocity formula

• Constant acceleration in a straight line

Technology

• “While” loops

• Reading sensor values

Engineering

• Applying problem-solving strategies

Math

• Calculations for distance, time, and velocity

• Logic statements (for example, “if – then”)

Hacking the Code Activity

With the example as a reference, try creating a new sketch to have the TaskBot drive
to a black line and stop. Remember what we learned from our previous activities.

Challenge yourself to create different behaviors when the TaskBot meets a line such
as backing up or turning a different direction.

Tip: In the sketch window the
PRIZM library functions change
color when they are typed or
spelled correctly. Consequently,
if spelled incorrectly they will not
change. In Arduino, the PRIZM
functions are recognized by the
software as keywords and will turn
orange when the syntax is correct.

Tip: An example library of code
to help you get started with
this challenge can be found
in the appendix. If you have a
digital copy of this guide, you
can simply copy and paste the
sample code for each activity into
your sketch window. A digital
download can be found at Pitsco.
com/TETRIX-PRIZM-Robotics-
Controller#downloads.

104 Building and Coding the PRIZM TaskBot

Black line minimum of 2 inches wide

Activity 12: Follow a Line
For this activity we can take what we learned in the previous activity and apply it
in a slightly different way to create a new behavior. This will enable the TaskBot to
follow a line.

Parts Needed

• Contrasting light and dark surface

• Fully assembled PRIZM TaskBot complete
with sensor module

• USB cable

• A charged TETRIX 12-Volt Rechargeable
NiMH Battery Pack

• Computer

Figure 25

Opening the Sketch

Before we open our next example sketch, be sure to save any sketch you want to
reference later.

Open the sketch by selecting File > Examples > TETRIX_PRIZM > TaskBot_Act12_
Follow_A_Line. A new sketch window will open titled TaskBot_Act12_Follow_A_
Line (Figure 25).

Building and Coding the PRIZM TaskBot 105

Executing the Code

Before we can upload the sketch to the PRIZM, remember to check our connections.
The Line Finder Sensor should be in digital sensor port 3.

To run this code we will need a white or light-reflective surface on which to place
a black stripe for the robot to traverse. White, glossy cardboard or several sheets of
paper tiled together can work.

Our black stripe can be made using electrical tape stuck down to the cardboard
or paper tiles. We can make a curvy path or just a straight line. There will be a
limitation on how sharp a curve our robot will be able to follow, so do not make the
curves too tight.

Upload the sketch. The green LED will light up, indicating the code is ready to
execute. When this has occurred, disconnect the USB cable and set the TaskBot on
the floor.

The TaskBot should be on a white or reflective surface with the Line Finder Sensor
slightly to the side of a line to follow. Press the green Start button to execute the
sketch. Observe the behavior of the robot.

Press the red Reset button to end the sketch. Based on the sketch comments, did
the behavior match expectations?

S-curveCurveStraight

Line length of 1
meter or roughly
36 inches

Sensor Sensor Sensor

Tip: Be sure to check that the Line
Finder Sensor is plugged into the
correct sensor port and that it is
adjusted properly to sense the line.
Some height adjustment might be
needed, or the small adjustment
screw on the back side of the
sensor module might need to be
tweaked. To see if the sensor is
working properly, manually move
the robot back and forth over the
black line and white surface. The
red LED on the Line Finder Sensor
should be on when the sensor
is over the white surface and off
when it is over the black line.

106 Building and Coding the PRIZM TaskBot

Moving Forward

This sketch uses two “if” statements, which we are becoming increasingly familiar
with. We have added a second action to execute based on the test condition for
each “if” statement.

The first action of the “if” statements deals with the motors. The “if” statement tells
the TaskBot to turn by sending power to one motor and braking the other based
on the condition of the Line Finder Sensor. Each “if” statement is the opposite of the
other. This creates a progressive series of turns that the TaskBot uses to follow the
line.

The second action of the “if” statements deals with the red LED on the PRIZM. The
“if” statement tells the red LED to turn on or off based on the condition of the
Line Finder Sensor. This on-and-off action is synced with the turning action of the
motors.

The actions in each “if” statement work together to make the TaskBot follow the line
while producing visual cues in the form of the blinking red LED.

For more detailed information about the sketch process and the PRIZM library
functions involved in using the DC motors, refer to www.arduino.cc and the
appendix: TETRIX PRIZM Arduino Library Functions:

• Pages 134-135 about sensor port functions

• Pages 137-142 about DC motor functions

Real-World Connection

German brand PUMA is taking a new approach to physical fitness with the launch
of its PUMA BeatBot. The BeatBot is a line-following robot that acts as a pacesetter
that a runner can race against. The runner is able to give the robot information
such as distance and pace through his or her smartphone. Then, it’s off to the track,
where the runner attempts to beat the BeatBot.

STEM Extensions

Science

• Light reflection and absorption

• Angle of incidence and reflection

Technology

• Threshold values

• Black and white (analog) acting as “on” and “off” (digital)

Engineering

• Designing machines to work close to edges

Math

• Applying logic statements to solve problems

Hacking the Code Activity

With the example as a reference, try creating a new sketch to have the TaskBot
follow a black line. Remember what we learned from our previous activities.

Challenge yourself to make the TaskBot go faster and still follow the line accurately
or change the code to make the TaskBot follow the line in the opposite direction.

Tip: Remember that you can print
and use the TETRIX PRIZM Arduino
Library Functions Cheat Sheet
within the appendix on page 153
as a quick reference for all the
functions available to you.

Tip: Want to see this in action? You
can by watching our RoboBench
video series for the PRIZM
Programming Guide. You can find
the entire series at video.pitsco.
com/TETRIX or on the Pitsco
YouTube channel.

Tip: In the sketch window the
PRIZM library functions change
color when they are typed or
spelled correctly. Consequently,
if spelled incorrectly they will not
change. In Arduino, the PRIZM
functions are recognized by the
software as keywords and will turn
orange when the syntax is correct.

Tip: An example library of code
to help you get started with
this challenge can be found
in the appendix. If you have a
digital copy of this guide, you
can simply copy and paste the
sample code for each activity into
your sketch window. A digital
download can be found at Pitsco.
com/TETRIX-PRIZM-Robotics-
Controller#downloads.

Building and Coding the PRIZM TaskBot 107

Figure 26

Opening the Sketch

Before we open our next example sketch, be sure to save any sketch you want to
reference later.

Open the sketch by selecting File > Examples > TETRIX_PRIZM > TaskBot_Act13_
Drive_To_Wall. A new sketch window will open titled TaskBot_Act13_Drive_To_
Wall (Figure 26).

Activity 13: Drive Toward a Wall and Stop
With this activity we will continue to build on what we have learned and apply it to
the Ultrasonic Sensor. This will enable the TaskBot to drive toward a wall and stop a
specified distance away.

Parts Needed

• Fully assembled PRIZM TaskBot complete
with sensor module

• USB cable

• A charged TETRIX 12-Volt Rechargeable
NiMH Battery Pack

• Computer

108 Building and Coding the PRIZM TaskBot

Executing the Code

Before we can upload the sketch to the PRIZM, remember to check our connections.
The Ultrasonic Sensor should be in digital sensor port 4.

Upload the sketch. The green LED will light up, indicating the code is ready to
execute. When this has occurred, disconnect the USB cable and set the TaskBot on
the floor.

The TaskBot should be pointed toward an object or wall at least 25 centimeters
away. Press the green Start button to execute the sketch. Observe the behavior
of the robot. What happens if the TaskBot or object is moved before the sketch is
ended?

Press the red Reset button to end the sketch. Based on the sketch comments, did
the behavior match expectations?

Moving Forward

This sketch uses an “if/else” statement, which is a new programming structure.

An “if/else” statement gives greater control over the flow of code than the basic “if”
statement. It enables multiple tests to be grouped together so they can be run at
the same time. In other words, the “if” part of the statement says if this condition
is true, do this. The “else” part of the statement says if this condition is false, do this
instead.

In this sketch the first part of the “if/else” statement tests the condition of the
Ultrasonic Sensor, and if the sensor is greater than 25 centimeters away from an
object, it sets the power for the motors at 50%. The second part of the “if/else”
statement uses the same test, but if it is less than 25 centimeters away from an
object, it gives an alternate action and tells the motors to brake.

For more detailed information about the sketch process and the PRIZM library
functions involved in using the DC motors, refer to www.arduino.cc and the
appendix: TETRIX PRIZM Arduino Library Functions:

• Pages 134-135 about sensor port functions

• Pages 137-142 about DC motor functions

More than 25
centimeters

Box or obstacle

Tip: Remember that you can print
and use the TETRIX PRIZM Arduino
Library Functions Cheat Sheet
within the appendix on page 153
as a quick reference for all the
functions available to you.

Tip: Want to see this in action? You
can by watching our RoboBench
video series for the PRIZM
Programming Guide. You can find
the entire series at video.pitsco.
com/TETRIX or on the Pitsco
YouTube channel.

Tip: Be sure to check that the
Ultrasonic Sensor is plugged
into the correct sensor port and
plugged in correctly. For this
sketch, the correct sensor port
is D4. Keep in mind that objects
without adequate surface size
or that have an irregular surface
might not be detected or affect
the distance the sensor reads.
To see if the sensor is working
properly, you can always go back
to Activity 5; load and run that
sketch to check the serial monitor
and verify the output from the
sensor. If you need to do this,
remember to either physically
change the sensor port the
Ultrasonic Sensor is plugged into
to match the sketch example or
change the sketch example.

Building and Coding the PRIZM TaskBot 109

Real-World Connection

In many newer cars, sensors are included to let drivers know when they are close
to another car or a wall when they are pulling into a parking space. As the car gets
closer to the wall, it will beep at the driver to alert him or her to slow and stop
before hitting the wall.

STEM Extensions

Science

• Speed of sound

• Composition of sound waves

Technology

• Sensor calibration

Engineering

• Designing machines to detect obstacles

Math

• Distance computations based on the speed of sound

Hacking the Code Activity

With the example as a reference, try creating a new sketch to have the TaskBot drive
toward a wall or object and stop. Remember what we learned from our previous
activities.

Challenge yourself by changing the direction, range, or speed. You can also test
what size and shape of object the Ultrasonic Sensor is more likely to detect and at
what range.

Tip: In the sketch window the
PRIZM library functions change
color when they are typed or
spelled correctly. Consequently,
if spelled incorrectly they will not
change. In Arduino, the PRIZM
functions are recognized by the
software as keywords and will turn
orange when the syntax is correct.

Tip: An example library of code
to help you get started with
this challenge can be found
in the appendix. If you have a
digital copy of this guide, you
can simply copy and paste the
sample code for each activity into
your sketch window. A digital
download can be found at Pitsco.
com/TETRIX-PRIZM-Robotics-
Controller#downloads.

110 Building and Coding the PRIZM TaskBot

Figure 27

Opening the Sketch

Before we open our next example sketch, be sure to save any sketch you want to
reference later.

Open the sketch by selecting File > Examples > TETRIX_PRIZM > TaskBot_Act14_
Avoid_Obstacle. A new sketch window will open titled TaskBot_Act14_Avoid_
Obstacle (Figure 27).

Activity 14: Avoiding Obstacles
For this activity we are going to expand on the “if/else” statement by adding actions.
This will enable the TaskBot to avoid obstacles in its path.

Parts Needed

• Multiple objects to avoid

• Fully assembled PRIZM TaskBot
complete with sensor module

• USB cable

• A charged TETRIX 12-Volt
Rechargeable NiMH Battery Pack

• Computer

Building and Coding the PRIZM TaskBot 111

Executing the Code

Before we can upload the sketch to the PRIZM, remember to check our connections.
The Ultrasonic Sensor should be in digital sensor port 4.

Upload the sketch. The green LED will light up, indicating the code is ready to
execute. When this has occurred, disconnect the USB cable and set the TaskBot on
the floor.

When running this code, set an obstacle in front of our robot at a distance well
outside the 25-centimeter detection range. Cardboard boxes work well for this
purpose. We do not want anything too heavy that could cause damage to our robot
just in case our robot crashes into it.

To begin, press the green Start button. Our robot will travel forward until it senses
that it is within 25 centimeters of the object in its path.

When an object is detected, the robot will stop, back up, make a right turn, and
continue. Observe the behavior of the robot.

Press the red Reset button to end the sketch. Based on the sketch comments, did
the behavior match expectations?

Moving Forward

This sketch continues using the “if/else” statement from the previous activity, but we
add multiple actions to the statement.

Each part of the “if/else” statement here has multiple actions. In the “if” part of the
statement, the TaskBot is moving forward at 35% power with the green LED on
while the sensor watches for an object. In the “else” part of the statement when the
TaskBot detects an object, the green LED turns off and the red LED turns on, and
the TaskBot stops, backs up, and turns right. The loop then continues.

For more detailed information about the sketch process and the PRIZM library
functions involved in using the DC motors, refer to www.arduino.cc and the
appendix: TETRIX PRIZM Arduino Library Functions:

• Pages 134-135 about sensor port functions

• Pages 137-142 about DC motor functions

More than 25
centimeters

More than 25
centimeters

Box or obstacle

Box or obstacle

Tip: Remember that you can print
and use the TETRIX PRIZM Arduino
Library Functions Cheat Sheet
within the appendix on page 153
as a quick reference for all the
functions available to you.

Tip: Want to see this in action? You
can by watching our RoboBench
video series for the PRIZM
Programming Guide. You can find
the entire series at video.pitsco.
com/TETRIX or on the Pitsco
YouTube channel.

Tip: Be sure to check that the
Ultrasonic Sensor is plugged
into the correct sensor port and
plugged in correctly. For this
sketch, the correct sensor port
is D4. Keep in mind that objects
without adequate surface size
or that have an irregular surface
might not be detected or affect
the distance the sensor reads.
To see if the sensor is working
properly, you can always go back
to Activity 5; load and run that
sketch to check the serial monitor
and verify the output from the
sensor. If you need to do this,
remember to either physically
change the sensor port the
Ultrasonic Sensor is plugged into
to match the sketch example or
change the sketch example.

112 Building and Coding the PRIZM TaskBot

Real-World Connection

Cars are beginning to include sensors to detect the world around them as they
move. Some cars now have automatic braking systems to begin the braking
process and slow the car down if they sense a situation in which a collision might
occur. The electronics involved provide a quicker reaction time than is possible for
a human. This extra amount of time can be very beneficial in minimizing the effects
of a collision.

STEM Extensions

Science

• Physics of sound reflection from a flat surface

• Physics of sound reflection from a round surface

• Physics of sound reflection from a rough surface

Technology

• Interpreting data from the Ultrasonic Sensor

Engineering

• Designing machines to avoid obstacles

Math

• Data graphing

• Data averaging

Hacking the Code Activity

With the example as a reference, try creating a new sketch to have the TaskBot
avoid obstacles. Remember what we learned from our previous activities.

Challenge yourself and experiment with different objects or make an obstacle
course with multiple objects to detect. We can experiment and modify the example
code as needed to change the reaction and behavior of our robot’s obstacle
avoidance skills.

Tip: In the sketch window the
PRIZM library functions change
color when they are typed or
spelled correctly. Consequently,
if spelled incorrectly they will not
change. In Arduino, the PRIZM
functions are recognized by the
software as keywords and will turn
orange when the syntax is correct.

Tip: An example library of code
to help you get started with
this challenge can be found
in the appendix. If you have a
digital copy of this guide, you
can simply copy and paste the
sample code for each activity into
your sketch window. A digital
download can be found at Pitsco.
com/TETRIX-PRIZM-Robotics-
Controller#downloads.

Building and Coding the PRIZM TaskBot 113

Building Interlude: Give the TaskBot Attitude!
Before we create more code, we are going to add a servo motor to the PRIZM TaskBot. This will bring everything together
that we used in the getting started activities. All the different kinds of motors and sensors will be used on the TaskBot to
give our robot some attitude.

We will use the servo to signal when an object has been detected in the robot’s path. The servo will raise a lever to signal
that an object has been detected. Follow the steps below to add a servo and lever arm to the PRIZM TaskBot.

Parts Needed

1x
Flat 160 mm x 27 mm

39272

1x
Single Standard-Scale
Servo Motor Bracket

39060

1x
Standard-Scale Servo

Motor 39197

6x
Kep Nut
39094

8x
Socket Head Cap Screw

6-32 x 5/16" 39098

6x
Button Head Cap Screw

3/8" 39111

114 Building and Coding the PRIZM TaskBot

Step 1.0

Step 1.1

Building and Coding the PRIZM TaskBot 115

Step 1.2

Step 1.3

116 Building and Coding the PRIZM TaskBot

Step 1.4

Step 1.5

Building and Coding the PRIZM TaskBot 117

Step 1.6

Step 1.6

118 Building and Coding the PRIZM TaskBot

Finished assembly should look like this.

Building and Coding the PRIZM TaskBot 119

Figure 28

Opening the Sketch

Before we open our next example sketch, be sure to save any sketch you want to
reference later.

Open the sketch by selecting File > Examples > TETRIX_PRIZM > TaskBot_Act15_
Combining_Sensors. A new sketch window will open titled TaskBot_Act15_
Combining_Sensors (Figure 28).

Activity 15: Combining the Sensors
This is a culmination of all the previous activities. The TaskBot will follow a line while
watching for obstacles. If an obstacle is detected, then the TaskBot will stop, raise its
arm, and wait for the obstacle to be moved before continuing.

Parts Needed

• Contrasting light and dark surface

• Obstacle

• Fully assembled PRIZM TaskBot complete
with sensor module

• USB cable

• A charged TETRIX 12-Volt Rechargeable
NiMH Battery Pack

• Computer

120 Building and Coding the PRIZM TaskBot

Executing the Code

Before we can upload the sketch to the PRIZM, remember to check our connections.
The Line Finder Sensor will be in digital sensor port 3, and the Ultrasonic Sensor will
be in digital sensor port 4.

We will use the Line Finder Sensor for line following and the Ultrasonic Sensor for
obstacle detection. This example sketch will have the robot follow the black line on
a white surface and look for an object in its path.

When the object is detected at a distance of less than 25 centimeters, the robot will
stop to avoid crashing into it. The robot will raise its arm and wait until the object is
cleared and then continue.

Upload the sketch. The green LED will light up, indicating the code is ready to
execute. When this has occurred, disconnect the USB cable and set the TaskBot on
the floor.

The TaskBot should be on a white or reflective surface with the Line Finder Sensor
slightly to the side of a line to follow.

When running this code, set an obstacle in front of our robot at a distance well
outside the 25 centimeter detection range. Cardboard boxes work well for this
purpose. We do not want anything too heavy that could cause damage to our robot
just in case our robot crashes into it.

Press the green Start button to execute the sketch. Observe the behavior of the
robot. You can also play around with moving your obstacles to see how your robot
reacts.

Press the red Reset button to end the sketch. Based on the sketch comments, did
the behavior match expectations?

Sensor

Box or obstacle
More than 25
centimeters

Troubleshooting the Line Finder
Sensor: Be sure to check that the
Line Finder Sensor is plugged into
the correct sensor port and that
it is adjusted properly to sense
the line. Some height adjustment
might be needed, or the small
adjustment screw on the back
side of the sensor module might
need to be tweaked. To see if
the sensor is working properly,
manually move the robot back
and forth over the black line and
white surface. The red LED on the
Line Finder Sensor should be on
when the sensor is over the white
surface and off when it is over the
black line.

Troubleshooting the Ultrasonic
Sensor: Be sure to check that
the Ultrasonic Sensor is plugged
into the correct sensor port and
plugged in correctly. For this
sketch, the correct sensor port
is D4. Keep in mind that objects
without adequate surface size
or that have an irregular surface
might not be detected or affect
the distance the sensor reads.
To see if the sensor is working
properly, you can always go back
to Activity 5; load and run that
sketch to check the serial monitor
and verify the output from the
sensor. If you need to do this,
remember to either physically
change the sensor port the
Ultrasonic Sensor is plugged into
to match the sketch example or
change the sketch example.

Tip: If PRIZM does not execute the
sketch after uploading, try cycling
the robot power switch off and on.

Building and Coding the PRIZM TaskBot 121

Moving Forward

This sketch uses an “if/else” statement and a “while” loop, which we have covered
before. This sketch is not about adding new elements. It is about combining the
elements from the previous activities.

The “if/else” statement in this sketch does the same line-following behavior as in
Activity 6 with two “if” statements but in a more controlled way. The “while” loop
monitors the Ultrasonic Sensor and creates a behavior when an object is detected
within 25 centimeters. This new behavior stops the TaskBot and uses the servo to
raise the TaskBot’s arm until the object is cleared from the TaskBot’s path. When the
object is cleared, the TaskBot will lower its arm and continue the original behavior
of line following.

For more detailed information about the sketch process and the PRIZM library
functions involved in using the DC motors, refer to www.arduino.cc and the
appendix: TETRIX PRIZM Arduino Library Functions:

• Pages 134-135 about sensor port functions

• Pages 137-142 about DC motor functions

• Pages 144-145 about servo motor functions

Real-World Connection

Electronic devices that are readily available these days (smartphones, health-
monitoring devices, and so forth) collect sensory data that we can use to determine
where we should go, what we should eat, how much we should exercise, when
we should get up in the morning, and many more potential actions. Combining
all these sensor inputs and determining what should be done happens within
the coding of these devices. Coding for robotics has similar applications – it’s all a
matter of what you want your robot to do based on the sensors it has!

STEM Extensions

Science

• Human senses

• Human brain function based on sensory data

Technology

• Prioritizing sensor readings

Engineering

• Integration of sensory data to solve problems

Math

• Data distribution terms (mean, median, mode, range, cluster, outlier, skew)

Hacking the Code Activity

With the example as a reference, try creating a new sketch to have the TaskBot
follow a black line and stop for obstacles. Remember what we learned from our
previous activities.

Challenge yourself to create a sketch in which the TaskBot follows a line to an
obstacle, goes around the object, and continues following the line instead of
waiting for the object to be cleared.

Tip: Remember that you can print
and use the TETRIX PRIZM Arduino
Library Functions Cheat Sheet
within the appendix on page 153
as a quick reference for all the
functions available to you.

Tip: Want to see this in action? You
can by watching our RoboBench
video series for the PRIZM
Programming Guide. You can find
the entire series at video.pitsco.
com/TETRIX or on the Pitsco
YouTube channel.

Tip: In the sketch window the
PRIZM library functions change
color when they are typed or
spelled correctly. Consequently,
if spelled incorrectly they will not
change. In Arduino, the PRIZM
functions are recognized by the
software as keywords and will turn
orange when the syntax is correct.

Tip: An example library of code
to help you get started with
this challenge can be found
in the appendix. If you have a
digital copy of this guide, you
can simply copy and paste the
sample code for each activity into
your sketch window. A digital
download can be found at Pitsco.
com/TETRIX-PRIZM-Robotics-
Controller#downloads.

122 Building and Coding the PRIZM TaskBot

Build, Code, Test, Learn . . . Go!
You have built a robot, you have programmed PRIZM, and you have tested and
tweaked your design, so where do you go from here?

This guide was intended to teach the essentials of building and coding a TETRIX
MAX robot using the PRIZM controller and the Arduino Software (IDE). However, this
is only the beginning and there are plenty of additional resources available and
opportunities to build larger robots that can complete more complex tasks. Now
that you have learned the basics, you are limited only by your imagination. To help
you get started, we have listed some of our favorite resources.

Please be sure to check out the appendix of this guide, which includes a vast array
of technical documentation including detailed PRIZM technical specifications,
component overviews and pinout diagrams, descriptions, function charts, and a
cheat sheet for the PRIZM Arduino library functions. In the appendix you will also
find support for integrating additional control components such as motor encoders.

For more on the Arduino Software (IDE) and programming tips and tricks:

PRIZM is built on Arduino architecture and is thus usable with programming
languages that support Arduino. This enables PRIZM users to access the Arduino
online community, which has produced a sea of support materials to get beginners
coding quickly. Learn more at www.arduino.cc.

For more on sensor integration and support:

The PRIZM controller is designed with sensor ports that are compatible with
the Grove system of modular sensors. Currently, the PRIZM Arduino library has
integrated support for two of these sensors: the Line Finder and the Ultrasonic.
For users who would like to integrate additional Grove sensors into their robotic
builds, you can find Arduino example code for each at wiki.seeedstudio.com/wiki/
Category:Grove or wiki.seeedstudio.com/wiki/Grove_System.

To view the sample Arduino code, simply click the sensor that is of interest.

Please note: TETRIX-compatible mounting adapters for the larger family of Grove
sensors are sold separately and will be needed for securing sensors to the robot
structure. Integrated support for additional Grove sensors will be added to the
PRIZM Arduino library as further updates are released.

For more on the TETRIX building system:

The parts and pieces used in this guide are only a portion of the elements available
in the TETRIX MAX system. Visit Pitsco.com to learn more about the additional
structural, motion, and accessory components that can be added to your collection;
to view support videos; and to download resources.

Building and Coding the PRIZM TaskBot 123

TETRIX PRIZM Robotics Controller Technical Specifications

Microcontroller: ATmega328P with Arduino Optiboot bootloader installed

Memory: 32 KB flash programmable memory (ATmega328P)

Power: 9-18 volts DC

DC motor ports: 2 Powerpole connections; H-bridge PWM controlled; 10 amps continuous
current each channel, 20-amp peak

Recommended motor: 12-Volt DC TETRIX MAX TorqueNADO Motor (44260)

DC motor control modes:

Constant power (-100% to 100%)
PID constant speed (-720 to 720 degrees per second)
PID constant speed to encoder target position and hold
PID constant speed to encoder degrees position and hold
Brake or Coast mode when stopping
DC motor current monitoring (all modes)

Motor encoder ports: 2 quadrature, 5 volts DC, 50 mA max; Spec: 360 CPR, 1,440 PPR; ENC 1 and
ENC 2

USB connector: USB Type B

USB driver: FTDI

Standard servo ports: 6 total: servo channels 1-6

Continuous rotation (CR) servo ports: 2 total: CR1 and CR2 channels

Total servo power limit: 6 volts DC, 6 amps max

Servo control modes:
Set servo speed (0% to 100%)
Set servo position (0-180 degrees)
Set CR servo state (Spin CW/Spin CCW)

Battery voltage monitoring: 0-18 volts range

Digital sensor ports (D2-D5): Each can be configured as digital input or output. D2 can be configured as a
serial communications port.

3 analog sensor ports (A1-A3): Each can be configured as analog input or digital input/output ports.

1 I2C port (I2C):
100 Khz speed. This connection shares same I2C bus as internal DC motor
and servo motor control chips. I2C addresses 0x01-0x06 reserved by the
PRIZM controller.

Motor controller expansion port (EXP): Additional TETRIX DC motor and servo control modules can be daisy-
chained to this port.

Battery connection port: Powerpole type; additional port for daisy-chaining battery power to motor
controllers added to the expansion port

1 green Start button (START): Programmable push button

1 red Stop/Reset button (RESET): Non-programmable push button

1 red LED: Programmable LED used as an indicator

1 green LED: Programmable LED used as an indicator

1 blue LED: Indicates the power is on when illuminated

2 yellow LEDs: Indicates serial data activity on the USB port

1 red and 1 green DC motor LEDs: Indicates DC motor rotation and direction for each DC motor channel

124 Appendix

PRIZM Robotics Controller Functional Overview

The PRIZM controller is connected to a computer using a standard USB cable
connection. Power is supplied from an external TETRIX 12-Volt Rechargeable NiMH
Battery Pack. The controller has a dual high-current DC motor drive system, each
motor having quadrature encoder support for implementing precise PID DC motor
velocity and position control. In addition there are six standard control servo ports
and two continuous rotation servo ports. There are four digital sensor ports, three
analog sensor ports, and one I2C port for use with external sensors. Digital port
D2 can also be configured with Arduino’s software serial library for serial data
communications. The digital sensor ports can be configured as input or output.
The analog sensor ports can be configured for analog input or digital output mode.
Also onboard are two LEDs – one Red and one Green – that can be used as visual
indicators.

The PRIZM controller functions are driven by an ATmega328P chip using the Optiboot
bootloader for uploading program code via a USB connection to the processor chip.
There are two additional processor chips used to control motor functions: a DC motor
control and encoder interface chip and a servo control chip. These chips communicate
with the main processor chip via I2C communication. Each motor control chip
contains firmware, which handles all of the complex DC motor, encoder, and servo
control functions, thereby freeing up the main processor for running program code.
The green Start button is used to begin running a program that has been uploaded
to the controller. The red Reset button is used to stop a running program. Pressing the
red Reset button resets the main processor chip and the DC and servo control chips
and initializes all stored memory values to 0.

Appendix 125

PRIZM Controller Component Overview
and Pinout Diagrams
PRIZM Sensor Ports

The PRIZM controller uses Arduino UNO-compatible pin assignments. The sensors that are
supported in the Arduino PRIZM coding library are set up automatically using the library
functions. Support for different types of sensors will be added as they become available.
However, the ports are all directly accessible using Arduino coding functions if you wish to
work with them. With the exception of the I2C port, all others can be configured as inputs or
outputs using the Arduino pinMode function. To learn more, visit the Language Reference
section at www.arduino.cc.

Table 1: I2C port pin assignments

Pin Function Arduino Software (IDE) pin assignment ()

Pin 1 Ground N/A

Pin 2 +5 volts, 100 mA N/A

Pin 3 SDA (I2C serial data) ADC4 input channel (A4)

Pin 4 SCL (I2C serial clock) ADC5 input channel (A5)

Table 2: Analog Sensor Port (A1)

Pin Function Arduino Software (IDE) pin assignment ()

Pin 1 Ground N/A

Pin 2 +5 volts, 100 mA N/A

Pin 3 No connect N/A

Pin 4 Analog input or digital input/output Analog input (A1) | digital I/O (15)

Table 3: Analog Sensor Port (A2)

Pin Function Arduino Software (IDE) pin assignment ()

Pin 1 Ground N/A

Pin 2 +5 volts, 100 mA N/A

Pin 3 No connect N/A

Pin 4 Analog input or digital input/output Analog input (A2) | digital I/O (16)

Table 4 Analog Sensor Port (A3)

Pin Function Arduino Software (IDE) pin assignment ()

Pin 1 Ground N/A

Pin 2 +5 volts, 100 mA N/A

Pin 3 No connect N/A

Pin 4 Analog input or digital input/output Analog input (A3) | digital I/O (17)

Figure 29: PRIZM Sensor Port (Pins are left to right: 1, 2, 3, 4.)

Note: The PRIZM I2C
port can be used only in
I2C mode. It may not be
configured for analog or
digital mode.

Note: The PRIZM I2C
port can be used only in
I2C mode. It may not be
configured for analog or
digital mode.

126 Appendix

Table 5: Digital Sensor Port (D2)

Pin Function Arduino Software (IDE) pin assignment ()

Pin 1 Ground N/A

Pin 2 +5 volts, 100 mA N/A

Pin 3 Digital input/output Digital I/O (9)

Pin 4 Digital input/output Digital I/O (2)

Table 6: Digital Sensor Port (D3)

Pin Function Arduino Software (IDE) pin assignment ()

Pin 1 Ground N/A

Pin 2 +5 volts, 100 mA N/A

Pin 3 No connect N/A

Pin 4 Digital input/output Digital I/O (3)

Table 7: Digital Sensor Port (D4)

Pin Function Arduino Software (IDE) pin assignment ()

Pin 1 Ground N/A

Pin 2 +5 volts, 100 mA N/A

Pin 3 No connect N/A

Pin 4 Digital input/output Digital I/O (4)

Table 8: Digital Sensor Port (D5)

Pin Function Arduino Software (IDE) pin assignment ()

Pin 1 Ground N/A

Pin 2 +5 volts, 100 mA N/A

Pin 3 No connect N/A

Pin 4 Digital input/output Digital I/O (5)

Note: Digital Port D2 can
also be configured as a
software-implemented
serial port using the
Arduino Software (IDE)
Serial Library. Pins D9
and D2 can be set to
RX/TX for serial port
communications.

Appendix 127

PRIZM Servo Ports

The PRIZM controller has six position-controlled servo ports labeled 1 through 6.
Each servo channel can power and control one standard hobby-type servo motor.
The TETRIX PRIZM library for the Arduino Software (IDE) does all of the complex work
of controlling the servo motors.

Pin 1: Servo PWM signal. It is usually the yellow or white wire.

Pin 2: Servo power supply wire. It is the red wire. PRIZM supplies +6 volt power.

Pin 3: Servo ground wire. It is the black wire.

Reversing the servo connection polarity will not damage the PRIZM controller.
However, if not inserted properly, the servo motor will not function. The PRIZM
controller can supply a total of 6 amps of DC power at 6 volts DC to the servo ports.
The amount of current draw is limited by a thermal (self-resetting fuse).

PRIZM Continuous Rotation (CR) Servo Ports

The PRIZM controller has two additional specialized servo ports for connection
of two continuous rotation servo motors. Continuous rotation servo motors are
designed to rotate continuously either clockwise or counterclockwise and can
be used as smaller, lightweight DC gearbox motors. The CR1 and CR2 ports are
designed to be connected to these types of servo motors and can spin them
continuously in either direction controlled by the commands in the PRIZM library.

Pin 1: Servo PWM signal. It is usually the yellow or white wire.

Pin 2: Servo power supply wire. It is the red wire. PRIZM supplies +6 volt power.

Pin 3: Servo ground wire. It is the black wire.

Reversing the servo connection polarity will not damage the PRIZM controller.
However, if not inserted properly, the servo motor will not function. The PRIZM
controller can supply a total of 6 amps of DC power at 6 volts DC to all the servo
ports – this includes both CR1 and CR2. The amount of current draw is limited by a
thermal (self-resetting fuse).

Figure 30: PRIZM Servo Motor Ports (Pins are left to right: 1, 2, 3.)
 (Labeled as SERVOS 1-6)

Figure 31: PRIZM Continuous Rotation (CR) Servo Motor Ports
(Pins are left to right: 1, 2, 3.) (Labeled as CR1 and CR2)

Note: We recommend the
following servo motors, which
are available at Pitsco.com: the
TETRIX MAX Standard-Scale Servo
Motor (39197), the Quarter-Scale
HS-785HB Winch Servo Motor with
Horn (39905), and the Quarter-
Scale HS-755HB Servo Motor with
Horn (39904).

128 Appendix

PRIZM Encoder Ports

The PRIZM controller has two quadrature encoder inputs for precise control of the
DC Motor 1 and Motor 2 channels. When utilized with DC motors, encoders provide
position and velocity feedback that is used in programming code to implement
powerful and precise DC motor speed and position control. The ENC1 port provides
encoder feedback for DC Motor Channel 1, while ENC2 provides encoder feedback
for DC Motor Channel 2. We have included code examples using encoders and all
PRIZM Arduino library functions associated with encoders. These code examples
can be found in the File > Examples > TETRIX_PRIZM drop-down menu.

Pin 1: +5 volts DC power supply

Pin 2: Encoder count signal (A)

Pin 3: Encoder ground

Pin 4: Encoder count signal (B)

Although the connector socket is “keyed” to prevent reverse polarity, take care to
not force the connector into the socket in the opposite direction. Damage to the
encoder or PRIZM controller could occur if the connector is forcibly inserted in the
reverse polarity direction.

Figure 32: PRIZM Quadrature Encoder Port
(Pins are left to right: 1, 2, 3, 4.) (Labeled as ENC1 and ENC2)

Note: Encoders are included
as part of the TETRIX MAX
TorqueNADO Motors. To utilize
the TorqueNADO motor encoder,
plug the white end of the encoder
cable into the TorqueNADO motor.
Plug the black end of the encoder
cable into the PRIZM ENC1 or
ENC2 port.

Appendix 129

PRIZM Expansion Port

The PRIZM controller has a RJ-45 modular jack, labeled EXP, connected to the
onboard I2C bus. This port can be used to connect additional TETRIX DC Motor
Controllers and servo controllers in a daisy-chain arrangement. Up to four
additional DC and/or servo motor controller boxes of any combination can be
connected to the expansion port for added motor control channels. Each additional
motor control box will dynamically set its own I2C address depending on its
position in the daisy chain. The first box will use address “0x01”, the second, “0x02”,
the third, “0x03”, and the fourth “0x04”.

When using additional I2C sensors or devices plugged into either the expansion
port or the I2C sensor port, these devices may not use I2C addresses 0x01 through
0x06. These address locations are reserved by the PRIZM internal motor and servo
control processor chips and any expansion motor or servo controller daisy-chained
to PRIZM through the expansion port.

PRIZM USB Port

The PRIZM USB port is used for communication between PRIZM and a Windows,
Mac, or Linux computer. Its main use is for downloading program code to the
program memory processor. It can also be used to transfer data between PRIZM
and a computer using serial communications protocol. For example, the Arduino
Software (IDE) includes a built-in serial monitor display window used to display
data values received from the PRIZM controller. This feature can be used to display
sensor or encoder data or even other types of program data as needed.

Oftentimes, viewing data values can be very helpful when debugging program
code. The serial monitor can also be used to send information to the PRIZM
controller. An example of this would be to have the PRIZM controller moving
DC motors or servos in response to keyboard entries. Users with advanced
programming knowledge could create graphical interfaces using Java, Python, or
another coding platform for monitoring data or controlling functions.

Figure 33: PRIZM Motor Controller Expansion Port
 Offset tab RJ-45 modular jack

Figure 34: PRIZM USB Programming and Communication Port

Note: This port is not compatible
with LEGO® MINDSTORMS®-related
devices. Do not plug in LEGO
MINDSTORMS sensors, motors,
the EV3 Brick, or any other LEGO
device to this port.

130 Appendix

PRIZM Reset Button

The red Reset button is used for two purposes. When pressed, it will terminate any
program code that is being executed and reset all sensor and encoder data values
to their initialized states. It effectively resets the entire system just as switching
power off and back on would do.

PRIZM Start Button

The green Start button is used to begin the execution of program code that is
downloaded to the PRIZM controller. When you are creating program code using
the Arduino Software (IDE), the PrizmBegin function executes all the instructions
necessary to begin running a program. Calling this function initializes necessary
parameters to their proper state and causes the program code to wait until the
green Start button is pressed before execution.

PRIZM DC Motor Ports

The PRIZM controller has two DC motor connection ports labeled Motor 1 and
Motor 2. Each motor channel is used to control the speed and direction of DC
motors via software commands defined in the PRIZM Arduino Software (IDE) Library.
Each motor channel can provide 10 amps of continuous DC current at 12 volts.
Each motor channel has a red and black connector, with red being the positive
connection and black the negative connection. The TorqueNADO motor power
cables come with the mating colored connectors and should be plugged red to red
and black to black for proper operation.

Figure 35: PRIZM Reset button. Press down to activate.

Figure 36: PRIZM Start button. Press down to activate.

Figure 37: PRIZM DC Motor Ports

Appendix 131

PRIZM Battery Connection Port

The PRIZM controller is powered by a TETRIX 12-Volt Rechargeable NiMH Battery
Pack. Included with the PRIZM controller is a power on/off switch assembly
designed to connect the battery pack connector to the PRIZM-style battery
connection port. The battery pack can be plugged into either the top or bottom
row of the port. The extra port is intended to be used to daisy-chain power
to additional motor controllers that can be optionally added to PRIZM via the
expansion port.

Figure 38: PRIZM Battery Power Inlet/Outlet Port

132 Appendix

TETRIX PRIZM Arduino Library Functions

Include Statements
The include statement is used to import the functionality of the TETRIX PRIZM Arduino Library into an Arduino sketch. The
PRIZM library is a collection of functions that simplifies programming the PRIZM controller. Think of a library as a container
filled with mini programs, each with its own distinct function name that we can use in code to carry out complex tasks. To
include a library in our Arduino sketch, use the #include statement at the beginning of our program code. For example, to
add the PRIZM library to an Arduino sketch, we would insert this statement at the top of our program.

#include <PRIZM.h>

This statement tells the Arduino compiler to include all the program code contained in the PRIZM library when we compile
our Arduino sketch.

Object Declarations
The object declaration is an important statement when using the PRIZM controller and the PRIZM library. In order to use
the functions contained in the PRIZM library, we must first declare a library object name, which is then inserted as a prefix
before each library function. We can do this by including the following statement just after the #include statement.

PRIZM myname;

The parameter myname is arbitrary – it can be anything that we choose or that makes sense to us depending on the code
application that we are creating. For consistency in this programming guide, the parameter myname will be set to “prizm”,
meaning that the object declaration statement used in sketch code examples will look like this:

PRIZM prizm;

The statement above creates a library object named “prizm” used in code when calling a function from the PRIZM class in
which the object was created. In our code, whenever we want to call a PRIZM library function, we will need to prefix each
function with the defined object name. In the case of the statement above, that object would be “prizm”. All the library
functions below are prefixed by the parameter myname. Do not forget, when using these functions in our code, to change
the parameter myname to whatever we have named our PRIZM library object.

Also, as we mentioned, the code examples in this guide use the object name “prizm”. Also, for clarification, any statement
preceded by “//” means that it is a comment or explanation only and is not included as program code when our sketch is
compiled. It’s considered good practice to be able to comment on and explain each step of code to make sure you can
understand it.

Appendix 133

Initialization Functions
The TETRIX PRIZM controller initialization functions are used to begin or, when needed, end a program.

myname.PrizmBegin();

This is always called in the setup() section of an Arduino sketch. This function initializes critical parameters and invokes the
use of the Start button on the PRIZM controller. It must always be used when creating sketches for the PRIZM controller.

Example:

prizm.PrizmBegin(); // initialize the PRIZM controller

myname.PrizmEnd();

This function ends or terminates a program, resets critical parameters, and sends the program back to start.

Example:

prizm.PrizmEnd(); // when called, will terminate the program execution

The TETRIX PRIZM sensor ports are used for connecting various types of sensors for digital and analog communication.
The digital sensors can be connected to PRIZM using ports D2-D5. Digital port D2 can also be configured as a software-
implemented serial communications port using the Arduino’s software serial library. All digital ports can be configured
as either input or output. Analog sensors are connected to PRIZM using ports A1-A3. The analog sensor ports can be
configured for analog input or digital outputs. There is also one I2C sensor port. The I2C port is connected to the PRIZM I2C
communication bus. I2C addresses 0x01-0x06 are reserved internally by the PRIZM controller and may not be used for an
external sensor device. Support for sensors will be added to PRIZM continually. Please check on support and availability of
sensors at Pitsco.com.

myname.readLineSensor(port#);

This function reads the state of the Line Finder Sensor and returns a value of “1” or “0.” The parameter port# specifies which
digital port the sensor is plugged into. The line sensor’s most common application is to sense the difference between black
and white surfaces. This is a very common way to program a robot to follow the edge of a dark line on a white surface or
the edge of a white line on a dark surface. It accomplishes this by detecting a beam of reflected infrared light from the
surface that it is facing. If the surface it is facing is a light color or is reflective, the light beam will bounce from it and be
detected by the sensor. If the surface is dark, or if the sensor is too far away from the facing surface, a reflected light beam
will not be detected. The Line Finder Sensor has a small adjustment potentiometer screw on the back side to adjust beam
sensitivity. If the sensor detects a non-reflective surface (it does not receive the reflected beam; there is a dark area or
line), the function will return “1”, meaning “line detected.” If the sensor is receiving the reflected beam (there is a white or
reflective surface), the function will return “0”, meaning “no line detected.” See the example below or the PRIZM library for a
full line follower example.

Example:

int x; // set up an integer variable named x

x = prizm.readLineSensor(2); // read the state of line sensor connected to digital

 // port (D2) into the variable x

or

Serial.print(prizm.readLineSensor(2)); // read the state of line sensor connected to digital

 // port (D2) and print it to the

 // Arduino serial monitor

134 Appendix

myname.readSonicSensorCM(port#);

This function reads and returns the distance of an object that is in front of the Ultrasonic Sensor. The parameter port#
specifies which digital sensor port the sensor is plugged into. The Ultrasonic Sensor is a non-contact distance measurement
module that can be used to give our robot vision so that it can know when objects are in its path and avoid them. The
sensor’s frequency is modulated at 42 kHz and has a measuring range of 3-400 centimeters. The sensor works by sending
a sonic pulse burst and then waiting on its return to the sensor as it is reflected off an object in range. The reflected sonic
pulse time period is measured to determine the distance to the object.

Example:

int x; // set up an integer variable x

x = prizm.readSonicSensorCM(2); // read and store in variable x the distance in

 // centimeters of an object that is detected to be

 // in front of the Ultrasonic Sensor connected to

 // digital port (D2)

or

Serial.print(prizm.readSonicSensorCM(2)); // read the distance in centimeters of an

 // object that is detected in front of the

 // Ultrasonic Sensor connected to digital

 // port (D2) and print it to the Arduino serial

 // monitor

myname.readSonicSensorIN(port#);

This function reads and returns the distance of an object in inches that is in front of the Ultrasonic Sensor. The parameter
port# specifies which digital sensor port the sensor is plugged into. The Ultrasonic Sensor is a non-contact distance
measurement module that can be used to give our robot vision so that it can know when objects are in its path and avoid
them. The sensor’s frequency is modulated at 42 kHz and has a measuring range of 2-150 inches. The sensor works by
sending a sonic pulse burst and then waiting on its return to the sensor as it is reflected off an object in range. The reflected
sonic pulse time period is measured to determine the distance to the object.

Example:

int x; // set up an integer variable x

x = prizm.readSonicSensorIN(port#); // read and store in variable x the distance

 // in inches of an object that is detected to

 // be in front of the Ultrasonic Sensor

 // connected to digital sensor port (D2)

or

Serial.print(prizm.readSonicSensorIN(2)); // read the distance in inches of an

 // object that is detected in front of

 // the Ultrasonic Sensor connected

 // to digital port (D2) and print it to

 // the Arduino serial monitor

Appendix 135

Battery Voltage
The TETRIX battery pack is rated at 12 volts DC at 3,000 mAh. When the battery pack is fully charged, the peak voltage could
be as high as 15 volts. The battery pack is considered discharged when the voltage drops below 12.1 volts. This pack is also
equipped with a 20-amp safety fuse that is replaceable. All TETRIX-powered devices must use the genuine TETRIX safety
fuse-equipped battery pack for ensured safety. The battery voltage can be monitored in program code by calling the read
battery voltage function.

myname.readBatteryVoltage();

This function reads and returns the voltage of the TETRIX battery pack plugged into the PRIZM battery connection port.
The value returned is an integer and can be divided by 100 to scale to actual battery voltage. For example, a value of 918 is
equal to an actual battery voltage of 9.18 volts.

Example:

int x; // set up an integer value x

x = prizm.readBatteryVoltage(); // read the battery voltage into variable x

or

Serial.print(prizm.readBatteryVoltage()); // read the battery pack voltage and print it

 // to the Arduino serial port monitor

Using the Start Button
myname.readStartButton();

The green Start button can be used for purposes other than starting the execution of program code. After it is used to start
a program, it can be read again at any point to execute other tasks, giving us more control over our program. One example
would be to have two different robot behaviors sectioned into two parts of code and use the Start button to begin the first
section, and then when pressed again, to jump to the second code section. The function will return “1” when the button is
pressed and a “0” when the button is pressed again.

Example:

int x; // set up a variable named x

x = prizm.readStartButton(); // read the state of the start button into variable x

or

while(prizm.readStartButton() == 0){ // wait here in a while loop until the start

 // button is pressed (returns a “1”)

}

136 Appendix

Onboard LEDs
The PRIZM controller has two onboard LEDs that can be controlled in code and used as indicators. The red and green LEDs
are switched on and off by setting each HIGH or LOW.

myname.setGreenLED(HIGH); // turns on the onboard green LED indicator

myname.setGreenLED(LOW); // turns off the onboard green LED indicator

Example:

prizm.setGreenLED(HIGH); // turns the PRIZM green LED on

prizm.setGreenLED(LOW); // turns the PRIZM green LED off

myname.setRedLED(HIGH); // turns on the onboard red LED indicator

myname.setRedLED(LOW); // turns off the onboard red LED indicator

Example:

prizm.setRedLED(HIGH); // turns the PRIZM red LED on

prizm.setRedLED(LOW); // turns the PRIZM red LED off

DC Motor Functions
The TETRIX PRIZM DC motor functions are used to control DC motors connected to Motor 1 and Motor 2 output ports.
There are three different types of control. Power control is used to set the amount of power and also set the direction.
The speed and targeting functions require a quadrature encoder to be connected to the PRIZM as a feedback sensor to
precisely control the speed rate and targeting position using a PID algorithm.

myname.setMotorPower(motor#, power);

This function is used to control the power level and direction of a DC motor connected to the Motor 1 or Motor 2 channel
ports. The parameter motor# selects the motor channel and the parameter power sets the power level. Motor# can be a
number or variable of 1 or 2. Power is the amount of power to spin the motor, which can range between 0 and 100. This is
a percentage of power, meaning “0” is fully off, and “100” is 100% power or fully on. The direction is set by the sign of the
power parameter.

Example:

prizm.setMotorPower(1, 100); // spin Motor 1 clockwise at 100% power

prizm.setMotorPower(1, -100); // spin Motor 1 counterclockwise at 100% power

Also, when you are stopping a motor, there are two modes: coast stop and brake stop. Setting power to 0 will result in the
motor coasting to a stop. Setting power to 125 results in the motor stopping with a braking action.

Example:

prizm.setMotorPower(2, 0); // stop Motor 2 with a coast to stop; 0 = coast

or

prizm.setMotorPower(2, 125); // stop Motor 2 with a brake stop; 125 = brake

Appendix 137

myname.setMotorPowers(power1, power2);

This function enables us to set the power level of Motor 1 and Motor 2 at the same time. Set parameters power1 and
power2 to a power level percentage and both channels will respond at once. Remember, the sign (+/-) of the power level
determines the direction of rotation.

Example:

prizm.setMotorPowers(50, -50); // spin Motor 1 CW at 50% power and Motor 2

 // CCW at 50% power

myname.setMotorSpeed(motor#, speed);

This function can precisely control the speed of a DC motor using a TETRIX quadrature encoder with PID control. The
encoder cable must be plugged into the PRIZM encoder socket “ENC1” or “ENC2” that matches the motor being controlled
in order for this function to work. The encoder sends counting data back to the PRIZM controller, where it is read and used
to implement a complex algorithm called PID, short for proportional integral derivative. The PID algorithm is very powerful
and will precisely regulate and attempt to spin the motor at a constant rate even when the load on the motor is changing.
Using PID can enable precise control and positioning movement of the wheels and mechanisms being driven by the DC
motors. The parameter motor# can be either “1” or “2”. The parameter speed is the rate in degrees per second (DPS) that we
wish to set our motor to spin. Values can range from a minimum of about 10 to a maximum of 720 DPS. The direction of the
motor is set by the sign of the speed parameter. Values outside that range might not perform well.

Example:

prizm.setMotorSpeed(1, 360); // spin Motor 1 clockwise at a rate of 360 DPS

or

prizm.setMotorSpeed(1, -360); // spin Motor 1 counterclockwise at a rate of 360

 // DPS

myname.setMotorSpeeds(speed1, speed2);

This function implements PID control and is identical to the previous function just explained with the difference being
that it will set the speed1 and speed2 parameters of Motor 1 and Motor 2 channels at the same time. Both motors being
controlled must have encoders installed and plugged into their matching encoder channel sockets ENC1 and ENC2 on the
PRIZM controller.

Example:

prizm.setMotorSpeeds(360, -180); // spin Motor 1 clockwise at 360 DPS and spin

 // Motor 2 counterclockwise at 180 DPS

138 Appendix

myname.setMotorTarget(motor#, speed, target);

In addition to speed control, this function adds a characteristic of control by using a PID algorithm to implement
both velocity and position target PID control. The motor being controlled as set by parameter motor# must have its
corresponding encoder plugged into the motor controller’s encoder port. This function will spin the commanded DC motor
to make the current encoder value become equal to a target value. The motor will rotate toward the commanded target at
a rotation rate set in the speed parameter (degrees per second). When the motor has reached the encoder count location
set in the target parameter, it will hold its position in a servo-like mode until a new command is received. This function
ignores the positive/negative sign of the speed parameter. Instead, the direction of rotation is set by the commanded
encoder target value of the target parameter. While this function is executing, the readMotorBusy() function can be read to
indicate that the motor is busy moving to its target. When this function returns “HIGH”, or “1”, the command motor channel
is busy (moving to the target). When the target has been reached, the readMotorBusy() function will return “LOW” or “0”. The
encoder resolution is 1,440 counts per revolution of the motor shaft, or 1/4 degree per count.

Example:

prizm.setMotorTarget(1, 360, 1440); // spin Motor 1 clockwise at 360 DPS; stop

 // and hold position when the encoder

 // count equals 1440 (one revolution)

prizm.setMotorTarget(2, 180, -1440); // spin Motor 1 counterclockwise at 180

 // DPS; stop and hold position when the

 // encoder count equals -1440

myname.setMotorTargets(speed1, target1, speed2, target2);

This function implements velocity and position target PID control for both DC motor channels. This function sets the mode
parameters of both Motor 1 and Motor 2 at the same time for an even start. Having our motors start as closely in sync
as possible can be critical in some applications. The speed and stopping target of Motor 1 are set by parameters speed1
and target1. Likewise, the speed and stopping target of Motor 2 are set by parameters speed2 and target2. This function
implements PID control for both DC motor channels. Encoders on both motors must be plugged into their matching
encoder connection ports ENC1 and ENC2 on the PRIZM controller. This function will spin both DC motors to make their
current encoder values become equal to their target values. The motors will rotate toward the commanded targets at
rotation rates set in speed1 and speed2 (degrees per second). When each motor has reached its target set in target1 and
target2, it will hold its position in a servo-like mode until a new command is received. This function ignores the positive/
negative sign value of speed1 and speed2. The direction of rotation is set by the commanded encoder target value of
target1 and target2. While this function is executing, the readMotorBusy() function can be read to indicate that the motor
channel is busy moving to its target. When this function returns “HIGH” or “1”, the command motor channel is busy (moving
to the target). When the target has been reached, the readMotorBusy() function will return “LOW” or “0”. The encoder
resolution is 1,440 counts per revolution of the motor shaft, or 1/4 degree per count.

Example:

prizm.setMotorTargets(360, 1440, 180, -1440); // this command will spin Motor 1

 // clockwise at a rate of 360 DPS,

 // stop, and hold position at encoder

 // count 1440. Motor 2 will spin

 // counterclockwise at a rate of 180

 // DPS, stop, and hold position

 // at encoder count -1440.

Appendix 139

myname.setMotorDegree(motor#, speed, degrees);

This function requires the DC motor to have an encoder connected to PRIZM in order to implement velocity and position
target control using PID. This function is identical to the set “target” functions explained previously, except the target values
are defined in degrees instead of encoder counts. Working in degrees might be a bit more intuitive than actual encoder
counts. The parameter motor# sets the function to control either Motor 1 or Motor 2. The speed parameter is the rate in
degrees per second for the commanded motor to maintain. The degrees parameter sets the position in degrees to which
the motor will rotate, stop, and hold position. When called, this function will spin the commanded motor channel to make
the current encoder degrees value to become equal to the degrees value. The motor will rotate toward the commanded
target at a rotation rate set in speed (degrees per second). When the motor has reached the target, it will hold its position
in a servo-like mode until a new command is received. This function ignores the positive/negative sign value of speed.
The direction of rotation is set by the commanded encoder target value of degrees. While this function is executing, the
readMotorBusy() function can be read to indicate that the motor is busy moving to its target. When this function returns
“1”, the command motor channel is busy (moving to the target). When the target has been reached, the readMotorBusy()
function will return “0”. The encoder degrees resolution is 1 degree.

Example:

prizm.setMotorDegree(1, 360, 180); // spin DC Motor Channel 1 clockwise at

 // 360 degrees per second to target position

 // 180 degrees (1/2 revolution) and stop

 // when target is reached, stop motor and

 // hold position at the 180 degree mark

prizm.setMotorDegree(2, 180, -360); // spin DC Motor Channel 1 counterclockwise

 // at 180 degrees per second to

 // target position -360 degrees or

 // (1 revolution) and stop; when target is

 // reached, stop motor and hold position at

 // the -360 degree mark

140 Appendix

myname.setMotorDegrees(speed1, degrees1, speed2, degrees2);

This function commands the speed and degrees target of both motor channels at the same time. This function requires
both DC motors being controlled to have their encoders connected to PRIZM in order to implement velocity and position
target PID control. This function is identical to the set “targets” functions explained previously, except the target values are
defined in degrees instead of encoder counts. Working in degrees might be a bit more intuitive than actual encoder counts.
The parameter speed1 sets the rate of rotation for Motor 1 in degrees per second. The degrees1 parameter is the position in
degrees to which the Motor 1 will rotate, stop, and hold position. The speed2 parameter sets the rate of rotation of Motor
2 in degrees per second. The parameter degrees2 sets the position in degrees to which Motor 2 will rotate, stop, and hold
position. When called, this function will spin the commanded motor channel to make the current encoder degrees value
become equal to the degrees value. The motors will rotate toward their commanded targets at rotation rates set in speed1
and speed2 (degrees per second). When a motor has reached the target, it will hold its position in a servo-like mode until
a new command is received. This function ignores the positive/negative sign values of speed1 and speed2. The direction
of rotation is set by the commanded encoder target value of degrees1 and degrees2. While this function is executing, the
readMotorBusy() function can be read to indicate that a motor is busy moving to its target. When this function returns
“1,” the command motor channel is busy (moving to the target). When the target has been reached, the readMotorBusy()
function will return “0.” The encoder degrees resolution is 1 degree.

Example:

prizm.setMotorDegrees(360, 360, 180, -360); // spin Motor 1 clockwise at 360

 // degrees per second and stop at

 // encoder target position of 360

 // degrees; spin Motor 2 counterclockwise

 // at 180 degrees per

 // second and stop at encoder target

 // position of -360 degrees; each

 // motor will hold its position when it

 // has reached its target value

myname.setMotorInvert(motor#, invert);

This function can be used to invert the forward/reverse direction mapping for both DC motor channels and their encoder
inputs. This function is intended to harmonize the forward and reverse directions for motors on opposite sides of a
skid-steer robot chassis. The motor# parameter sets the motor channel of 1 or 2. The value of the invert parameter sets
the condition; invert = 0 means no invert, while invert = 1 inverts the motor and encoder set by channel. The default on
controller power-up is no invert. This function needs to be called only once in the setup section of an Arduino sketch.
However, it can be called again and changed at any time in program code.

Example:

prizm.setMotorInvert(1, 1); // invert the rotation direction of Motor 1

prizm.setMotorPower(1, 50); // normally, this function would cause Motor 1 to

 // spin at 50% power in the clockwise direction

 // but because we called the invert function, the

 // actual resulting rotation of Motor 1 will be

 // counterclockwise (-50); the same mapping of

 // direction applies to all the motor power,

 // speed, and targeting functions when invert is

 // called

Appendix 141

myname.readMotorBusy(motor#);

This function will return a value equal to “0” or “1” depending on the status of any DC motor channel that is in targeting
mode. That is, any DC motor that is being controlled using an encoder for rotation to an encoder count or degree target will
return its status when polled with this function. The parameter motor# sets the motor channel to 1 or 2. The function will
return “1” when the motor is moving toward its target. The function will return “0” when the motor has reached its target.
Being able to poll the status of a targeting motor can be very useful in code to wait for a motor to reach its target before
continuing on to the next instruction.

Example:

int x; // define an integer variable x

x = prizm.readMotorBusy(1); // read the returned status of Motor 1 into x

or

x = prizm.readMotorBusy(2); // read the returned status of Motor 2 into x

or

Serial.print(prizm.readMotorBusy(1)); // print the status of Motor 1 to the Arduino

 // serial monitor

myname.readMotorCurrent(motor#);

This function reads the amount of DC current being drawn by a DC motor connected to either the Motor 1 or Motor 2
port. The motor# parameter sets the motor channel to 1 or 2. The amount of current that a motor draws will depend on the
amount of load that the motor is moving. A heavier load on our motor will result in larger current draws. In order to keep
from damaging a motor, it is important to not subject a motor to continuous high loads. High current draws will cause a DC
motor to heat and eventually might result in failure. This function can be used to set a limit on how much current a motor
can be allowed to draw. See the example program that came with the PRIZM library for a full code example of how to
implement current limiting.

Example:

int x; // create an integer variable x

x = prizm.readMotorCurrent(1); // read the Motor 1 current and store it in x

or

Serial.print(prizm.readMotorCurrent(2)); // read Motor 2 current and print it to the

 // serial monitor; the value that this

 // function returns is an integer and is the

 // current in milliamps; for example, a value

 // of 1500 equals 1.5 amps

142 Appendix

Encoder Functions
The TETRIX quadrature motor encoders enable precise speed and position control of TETRIX DC motors. The PRIZM
controller will read the counting data of the encoder and implement an internal PID algorithm. The PRIZM controller’s PID
control algorithm has been tuned for TETRIX DC motors and quadrature encoders. TETRIX quadrature encoders produce
360 counts per revolution (CPR) and 1,440 pulses per revolution (PPR). This translates to 1/4 degree of DC motor shaft
rotational resolution.

myname.readEncoderCount(enc#);

This function reads and returns the encoder count of a TETRIX quadrature encoder attached to encoder port ENC1 or ENC2.
The count value returned is a long-type value. The parameter enc# can be 1 or 2. A value of 1 will return the count value of
ENC1. An enc# value of 2 will return the count value of ENC2. For reference, 1,440 counts = 1 motor shaft revolution.

Example:

long x; // set up a long-type variable x

x = prizm.readEncoderCount(1); // read and store the count of ENC1 into the long

 // variable x

or

Serial.print(prizm.readEncoderCount(2); // print the count value of ENC2 to the

 // Arduino serial monitor

myname.readEncoderDegrees(enc#);

This function reads and returns the encoder count in degrees of a TETRIX quadrature encoder attached to encoder port
ENC1 or ENC2. The value returned is a long-type value. The parameter enc# can be 1 or 2. A value of 1 will return the degree
position of ENC1. A value of 2 will return the degree position of ENC2. Using the degrees function to track motor rotation
might be more intuitive than using the raw encoder count values. Although the raw count value will yield 1/4-degree
resolution, the degrees function resolution is limited to 1-degree resolution.

Example:

long x; // set up a long-type variable x

x = prizm.readEncoderDegrees(1); // set up a long-type variable x; read and

 // store the degree value of ENC1 into the

 // long variable x

or

Serial.print(prizm.readEncoderDegrees(2)); // print the degree value of ENC2 to

 // the Arduino serial monitor

myname.resetEncoder(enc#);

When called, this function resets the encoder count set in parameter enc# (1 or 2) to 0.

Example:

prizm.resetEncoder(1); // reset Encoder count 1 (ENC1) to 0

prizm.resetEncoder(2); // reset Encoder count 2 (ENC2) to 0

myname.resetEncoders();

When called, this function resets the encoder count of Encoders 1 and 2 to 0.

Example:

prizm.resetEncoders(); // reset both encoders (1 and 2) to 0

Appendix 143

Servo Motor Functions
TETRIX servo motors come in two types. A standard servo can be commanded to rotate to any position between 0 and
180 degrees. Once there, it will hold its position and resist being moved. The PRIZM controller has six servo ports marked
1-6. Each port can control one standard servo for six independent channels of servo control. A different type of servo is a
continuous rotation (CR) servo. A CR servo is designed to rotate clockwise or counterclockwise in the same way that a DC
motor can. The PRIZM controller has two specialized ports marked CR1 and CR2 that are designed to spin CR servo motors
in either direction.

A CR motor can be helpful when we want a DC motor to fit into a small space or for light-duty loads. When you are
plugging servos into a PRIZM servo port, the servo red wire matches the “+” mark, and the black wire matches the “-” mark.

myname.setServoSpeed(servo#, speed);

This function sets the speed of a standard servo while it is rotating to its commanded position. The parameter servo#
selects the servo channel. The parameter speed sets the speed of rotation. This function needs to be called only once at the
beginning of a program. However, it can be called at any time in program code to change speeds. Speed range is between
0 and 100, equating to speeds of 0-100%. If this function is not called, servo speed will always default to 100.

Example:

prizm.setServoSpeed(1, 25); // set the speed of Servo channel 1 to 25%

myname.setServoSpeeds(speed1, speed2, speed3, speed4, speed5, speed6);

This function enables setting all six servo channels within one function statement. The parameters speed(#) can range
between 0 and 100. Each speed can be different. Please note that when using the setServoSpeeds functions, values must
be set for all six ports, even if you are not using all six.

Example:

prizm.setServoSpeeds(25, 25, 25, 25, 25, 25); // set all six servo channel speeds to 25%

myname.setServoPosition(servo#, position);

This function rotates a servo to a specified target position. The parameter servo# refers to the servo that will change
position. The position parameter specifies the target position to move toward. Position can be anywhere between 0 and
180. The position parameter represents the position rotational target of the servo in degrees. Be careful not to try to rotate
a servo past its internal mechanical limit. This limit can vary slightly from servo to servo. When rotating toward an extreme
value of 0 or 180, listen to the servo to be sure it is not making a buzzing noise, meaning it could be against a mechanical
stop. This might cause damage to the servo and waste battery power.

Example:

prizm.setServoPosition(1, 180); // rotate Servo 1 to position 180 degrees

myname.setServoPositions(position1, position2, position3, position4, position5, position6);

This function enables rotation of all six servo channels at once to target positions. The parameter position(#) sets the target
position of each channel in order of 1-6. The target position can be any value of 0-180, which represents degrees. Each
target position may be different. Please note that when using the setServoPositions functions, values must be set for all six
ports, even if you are not using all six.

Example:

prizm.setServoPositions(90,90,90,90,90,90); // rotate all six servos to 90 degrees

144 Appendix

myname.readServoPosition(servo#);

This function reads and returns the current position of a servo channel. The parameter servo# can be any channel 1-6. The
value returned is an integer type of value 0-180.

Example:

int x; // set up an integer variable named x

x = prizm.readServoPosition(1); // read the current rotation position of Servo

 // channel 1 and store it in variable x

or

Serial.print(prizm.readServoPosition(2)); // read the position of Servo channel 2 and

 // print it to the Arduino serial monitor

myname.setCRServoState(CRservo#, state);

This function controls the on/off state of a continuous rotation (CR) servo motor. The parameter CRservo# refers to the CR
motor channel to be controlled. The state parameter sets the on/off state and the direction of rotation. The state parameter
can be 100 for clockwise rotation, -100 for counterclockwise rotation, and 0 for off, or stop.

Example:

prizm.setCRServoState(1, 100); // turn CR1 on to rotate continuous in a clockwise

 // direction

prizm.setCRServoState(1, 0); // turn CR1 off and stop

prizm.setCRServoState(1, -100); // turn CR1 on to rotate continuous in a

 // counterclockwise direction

Appendix 145

TETRIX PRIZM Arduino Library Functions Chart
Description Function Coding Example

Prizm Begin
Is called in the Arduino code setup()
loop. Initializes the PRIZM controller.

PrizmBegin();

Data Type: None

PrizmBegin();
Reset and initialize PRIZM controller.

Prizm End
When called, immediately terminates
a program and resets the PRIZM
controller.

PrizmEnd();

Data Type: None

PrizmEnd();
Terminate a PRIZM program and reset
controller.

Set Red LED
Sets the PRIZM red indicator LED to on
or off.

setRedLED(state);
Data Type:
state = integer

Data Range:
state = 1 or 0
or
state = HIGH or LOW

setRedLED(HIGH);
or
setRedLED(1);
Turn red LED on.
setRedLED(LOW);
or
setRedLED(0);
Turn red LED off.

Set Green LED
Sets the PRIZM green indicator LED to
on or off.

setGreenLED(state);

Data Type:
state = integer

Data Range:
state = 1 or 0
or
state = HIGH or LOW

setGreenLED(HIGH);
or
setGreenLED(1);
Turn green LED on.
setGreenLED(LOW);
or
setGreenLED(0);
Turn green LED off.

Set DC Motor Power
Sets the power level and direction of
a TETRIX DC motor connected to the
PRIZM DC motor ports. Power level
range is 0 to 100. Direction is set by
the sign (+/-) of the power level. Power
level 0 = stop in coast mode. Power
level 125 = stop in brake mode.

setMotorPower(motor#, power);
Data Type:
motor# = integer
power = integer

Data Range:
motor# = 1 or 2
power = -100 to 100
or
power = 125 (brake mode)

setMotorPower(1, 50);
Spin Motor 1 clockwise at 50% power.
setMotorPower(2, -50%);
Spin Motor 2 counterclockwise at 50%
power.
setMotorPower(1, 0);
Turn off Motor 1 in coast mode.
setMotorPower(2, 125);
Turn off Motor 2 in brake mode.

Set DC Motor Powers
Simultaneously sets the power level
and direction of both TETRIX DC
motors connected to the PRIZM motor
ports. Both PRIZM Motor 1 and Motor
2 channel parameters are set with
a single statement. The power level
range is 0 to 100. Direction is set by
the sign (+/-) of the power level. Power
level 0 = stop in coast mode. Power
level 125 = stop in brake mode.

setMotorPowers(power1, power2);
Data Type:
power1 = integer
power2 = integer

Data Range:
power1 = -100 to 100
power2 = -100 to 100
or
power1 = 125 (brake mode)
power2 = 125 (brake mode)

setMotorPowers(50, 50);
Spin Motor 1 and Motor 2 clockwise at
50% power.
setMotorPowers(-50, 50);
Spin Motor 1 counterclockwise and
Motor 2 clockwise at 50% power.
setMotorPowers(0, 0);
Turn off Motor 1 and Motor 2 in coast
mode.
setMotorPowers(125, 125);
Turn off Motor 1 and Motor 2 in brake
mode.

Set DC Motor Speed
Uses velocity PID control to set
the constant speed of a TETRIX DC
motor with a TETRIX motor encoder
connected. The speed parameter range
is 0 to 720 degrees per second (DPS).
The sign (+/-) of the speed parameter
controls direction of rotation.

setMotorSpeed(motor#, speed);
Data Type:
motor# = integer
speed = integer

Data Range:
motor# = 1 or 2
speed = -720 to 720

setMotorSpeed(1, 360);
Spin Motor 1 clockwise at a constant
speed of 360 DPS.
setMotorSpeed(1, -360);
Spin Motor 1 counterclockwise at a
constant speed of 360 DPS.

146 Appendix

Description Function Coding Example

Set DC Motor Speeds
Uses velocity PID control to
simultaneously set the constant
speeds of both TETRIX DC motor
channels with TETRIX motor encoders
connected. Both PRIZM Motor 1 and
Motor 2 channel parameters are set
with a single statement. The speed
parameter range is 0 to 720 degrees
per second (DPS). The sign (+/-) of the
speed parameter controls direction
of rotation.

setMotorSpeeds(speed1, speed2);

Data Type:
speed1 = integer
speed2 = integer

Data Range:
speed1 = -720 to 720
speed2 = -720 to 720

setMotorSpeeds(360, 360);
Spin Motor 1 and Motor 2 clockwise at a
constant speed of 360 DPS.
setMotorSpeeds(360, -360);
Spin Motor 1 clockwise and Motor 2
counterclockwise at a constant speed of
360 DPS.
setMotorSpeeds(360, -180);
Spin Motor 1 clockwise and Motor 2
counterclockwise at a constant speed of
180 DPS.

Set DC Motor Target
Implements velocity and positional
PID control to set the constant speed
and the encoder count target holding
position of a TETRIX DC motor with a
TETRIX encoder connected. The speed
parameter range is 0 to 720 degrees
per second (DPS). The encoder count
target position is a signed long integer
from -2,147,483,648 to 2,147,483,647.
Each encoder count = 1/4-degree
resolution.

setMotorTarget(motor#, speed,
target);

Data Type:
motor# = integer
speed = integer
target = long

Data Range:
motor# = 1 or 2
speed = 0 to 720
target = -2147483648 to 2147483647

setMotorTarget(1, 360, 1440);
Spin Motor 1 at a constant speed of 360
DPS until encoder 1 count equals 1,440.
When at encoder target count, hold
position in a servo-like mode.
setMotorTarget(2, 180, -1440);
Spin Motor 2 at a constant speed of 180
DPS until encoder 2 count equals -1,440
(1 revolution). When at encoder target
count, hold position in a servo-like mode.

Set DC Motor Targets
Implements velocity and positional
PID control to simultaneously set the
constant speeds and the encoder
count target holding positions of
both TETRIX DC motor channels each
with TETRIX encoders connected.
Both PRIZM Motor 1 and Motor 2
channel parameters are set with a
single statement. The speed parameter
range is 0 to 720 degrees per second
(DPS). The encoder count target
position is a signed long integer
from -2,147,483,648 to 2,147,483,647.
Each encoder count = 1/4-degree
resolution.

setMotorTargets(speed1, target1,
speed2, target2);

Data Type:
speed1 = integer
target1 = long
speed2 = integer
target2 = long

Data Range:
speed1 = 0 to 720
target1 = -2147483648 to 2147483647
speed2 = 0 to 720
target2 = -2147483648 to 2147483647

setMotorTargets(360, 1440, 360,
1440);
Spin Motor 1 and Motor 2 at a constant
speed of 360 DPS until each motor
encoder count equals 1,440. When a
motor reaches its encoder target count,
hold position in a servo-like mode.
setMotorTargets(360, 1440, 180,
2880);
Spin Motor 1 at a constant speed of 360
DPS until encoder 1 count equals 1,440.
Spin Motor 2 at a constant speed of 180
DPS until encoder 2 equals 2,880. Each
motor will hold its position in a servo-
like mode when it reaches the encoder
target.

Note: One encoder count equals
1/4-degree resolution. For example, 1
motor revolution equals 1,440 encoder
counts (1,440 / 4 = 360).

Set Motor Degree
Implements velocity and positional
PID control to set the constant
speed and the degree target holding
position of a TETRIX DC motor with a
TETRIX encoder connected. The speed
parameter range is 0 to 720 degrees
per second (DPS). The encoder degrees
target position is a signed long integer
from -536,870,912 to 536,870,911 with
a 1-degree resolution.

setMotorDegree(motor#, speed,
degrees);

Data Type:
motor# = integer
speed = integer
degrees = long

Data Range:
motor# = 1 or 2
speed = 0 to 720
degrees = -536870912 to 536870911

setMotorDegree(1, 180, 360);
Spin Motor 1 at a constant speed of 180
DPS until encoder 1 degree count equals
360. When at encoder target degree
count, hold position in a servo-like mode.
setMotorDegree(2, 90, 180);
Spin Motor 2 at a constant speed of 90
DPS until encoder 2 degree count equals
180. When at encoder target degree
count, hold position in a servo-like mode.

Appendix 147

Description Function Coding Example

Set Motor Degrees
Implements velocity and positional PID
control to set the constant speeds and
the degree target holding positions
of both TETRIX DC motor channels
with TETRIX encoders connected. Both
PRIZM Motor 1 and Motor 2 channel
parameters are set with a single
statement. The speed parameter range
is 0 to 720 degrees per second (DPS).
The encoder degree target position is a
signed long integer from -536,870,912
to 536,870,911 with a 1-degree
resolution.

setMotorDegrees(speed1, degrees1,
speed2, degrees2);

Data Type:
speed1 = integer
degrees1 = long
speed2 = integer
degrees2 = long

Data Range:
speed1 = 0 to 720
degrees1 = -536870912 to 536870911
speed2 = 0 to 720
degrees2 = -536870912 to 536870911

setMotorDegrees(180, 360, 180, 360);
Spin Motor 1 and Motor 2 at a constant
speed of 180 DPS until each motor
encoder degree count equals 360. When
a motor reaches its degree target count,
hold position in a servo-like mode.
setMotorDegrees(360, 720, 90, 360);
Spin Motor 1 at a constant speed of 360
DPS until encoder 1 degree count equals
720. Spin Motor 2 at a constant speed
of 90 DPS until encoder 2 degree equals
360. Each motor will hold its position in
a servo-like mode when it reaches the
encoder target.

Set Motor Direction Invert
Inverts the forward/reverse direction
mapping of a DC motor channel. This
function is intended to harmonize
the forward and reverse directions
for motors on opposite sides of a
skid-steer robot chassis. Inverting
one motor channel can make coding
opposite-facing DC motors working
in tandem more intuitive. An invert
parameter of 1 = invert. An invert
parameter of 0 = no invert. The default
is no invert.

setMotorInvert(motor#, invert);

Data Type:
motor# = integer
invert = integer

Data Range:
motor# = 1 or 2
invert = 0 or 1

setMotorInvert(1, 1);
Invert the spin direction mapping of
Motor 1.
setMotorInvert(2, 1);
Invert the spin direction mapping of
Motor 2.
setMotorInvert(1, 0);
Do not invert the spin direction mapping
of Motor 1.
setMotorInvert(2, 0);
Do not invert the spin direction mapping
of Motor 2.

Note: Non-inverting is the default on
PRIZM power-up or reset.

Read Motor Busy Status
The busy flag can be read to check
on the status of a DC motor that is
operating in positional PID mode. The
motor busy status will return “1” if it
is moving toward a positional target
(degrees or encoder count). When it
has reached its target and is in hold
mode, the busy status will return “0.”

readMotorBusy(motor#);

Data Type:
motor# = integer

Data Range:
motor# = 1 or 2

Data Type Returned:
value = integer

readMotorBusy(1);
Return the busy status of Motor 1.
readMotorBusy(2);
Return the busy status of Motor 2.

Read DC Motor Current
Reads the DC motor current of each
TETRIX DC motor attached to PRIZM
Motor 1 and Motor 2 ports. The integer
value that is returned is motor load
current in milliamps.

readMotorCurrent(motor#);

Data Type:
motor# = integer

Data Range:
motor# = 1 or 2

Data Type Returned:
value = integer

readMotorCurrent(1);
Read the motor load current of the
PRIZM Motor 1 channel.
readMotorCurrent(2);
Read the motor load current of the
PRIZM Motor 2 channel.

Example: 1500 = 1.5 amps

148 Appendix

Description Function Coding Example

Read Encoder Count
Reads the encoder count value. The
PRIZM controller uses encoder pulse
data to implement PID control of a
TETRIX DC motor connected to the
motor ports. The PRIZM controller
counts the number of pulses produced
over a set time period to accurately
control velocity and position. Each 1/4
degree equals one pulse, or count, or
1 degree of rotation equals 4 encoder
counts. The current count can be
read to determine a motor’s shaft
position. The total count accumulation
can range from -2,147,483,648 to
2,147,483,647. A clockwise rotation
adds to the count value, while a
counterclockwise rotation subtracts
from the count value. The encoder
values are set to 0 at power-up and
reset.

readEncoderCount(enc#);

Data Type:
enc# = integer

Data Range:
enc# = 1 or 2

Data Type Returned:
value = long

readEncoderCount(1);
Read the current count value of encoder
1 (ENC 1 port).
readEncoderCount(2);
Read the current count value of encoder
2 (ENC 2 port).

Read Encoder Degrees
Reads the encoder degree value. The
PRIZM controller uses encoder pulse
data to implement PID control of a
TETRIX DC motor connected to the
motor ports. The PRIZM controller
counts the number of pulses produced
over a set time period to accurately
control velocity and position. This
function is similar to the encoder count
function, but instead of returning the
raw encoder count value, it returns
the motor shaft position in degrees.
The total degree count accumulation
can range from -536,870,912 to
536,870,911. A clockwise rotation
adds to the count value, while a
counterclockwise rotation subtracts
from the count value. The encoder
values are set to 0 at power-up and
reset.

readEncoderDegrees(enc#);

Data Type:
enc# = integer

Data Range:
enc# = 1 or 2

Data Type Returned:
value = long

readEncoderDegrees(1);
Read the current degree count value of
encoder 1 (ENC 1 port).
readEncoderDegrees(2);
Read the current degree count value of
encoder 2 (ENC 2 port).

Reset Each Encoder
Resets the encoder count accumulator
to 0.

resetEncoder(enc#);

Data Type:
enc# = integer

Data Range:
 = 1 or 2

resetEncoder(1);
Reset the encoder 1 count to 0.
resetEncoder(2);
Reset the encoder 2 count to 0.

Reset Both Encoders (1 and 2)
Resets the encoder 1 and encoder 2
count accumulators to 0.

resetEncoders();

Data Type: None

resetEncoders();
Reset the encoder 1 count to 0 and
encoder 2 count to 0.

Appendix 149

Description Function Coding Example

Read Line Sensor Output
Reads the digital output of the Line
Finder Sensor connected to a PRIZM
sensor port. The value read is “0” when
reflected light is received (detecting
a light-colored surface) and “1” when
light is not received (detecting a dark-
colored surface, such as a line).

readLineSensor(port#);

Data Type:
port# = integer

Data Range:
port# (See note in adjacent column.)

Data Type Returned:
value = integer (0 or 1)

readLineSensor(2);
Read the digital value of a Line Finder
Sensor on digital sensor port D2.

Note: The Line Finder Sensor can be
connected to any digital port D2-D5, or
analog ports A1-A3 configured as digital
input. See technical section on sensor
ports for a more detailed explanation of
sensor ports and pinouts.

Read Ultrasonic Sensor in
Centimeters
Reads the distance in centimeters of an
object placed in front of the Ultrasonic
Sensor. The sensor is modulated at
42 kHz and has a range of 3 to 400
centimeters. The value read is an
integer.

readSonicSensorCM(port#);

Data Type:
port# = integer

Data Range:
port# (See note in adjacent column.)

Data Type Returned:
value = integer (3 to 400)
Min and max might slightly vary.

readSonicSensorCM(3);
Read the distance in centimeters of an
object placed in front of the Ultrasonic
Sensor connected to digital sensor port
D3.

Note: The Ultrasonic Sensor can be
connected to any digital port D2-D5, or
analog ports A1-A3 configured as digital
input. See technical section on sensor
ports for a more detailed explanation of
sensor ports and pinouts.

Read Ultrasonic Sensor in Inches
Reads the distance in inches of an
object placed in front of the Ultrasonic
Sensor. The sensor is modulated at 42
kHz and has a range of 2 to 150 inches.
The value read is an integer.

readSonicSensorIN(port#);

Data Type:
port# = integer

Data Range:
port# (See note in adjacent column.)

Data Type Returned:
value = integer (2 to 150)
Min and max might slightly vary.

readSonicSensorIN(4);
Read the distance in inches of an object
placed in front of the Ultrasonic Sensor
connected to digital sensor port D4.

Note: The Ultrasonic Sensor can be
connected to any digital port D2-D5, or
analog ports A1-A3 configured as digital
input.

Read Battery Pack Voltage
Reads the voltage of the TETRIX
battery pack powering the PRIZM
controller. The value read is an integer.

readBatteryVoltage();

Data Type: None

Data Type Returned:
value = integer

readBatteryVoltage();
Read the voltage of the TETRIX battery
pack powering the PRIZM controller.

Example: A value of 918 equals 9.18
volts.

Read Start Button State
Reads the state of the green PRIZM
Start button. A returned value of “1”
indicates a pressed state. A returned
value of “0” indicates a not-pressed
state.

readStartButton();

Data Type: None

Data Type Returned:
value = integer (0 or 1)

readStartButton();
Read the Start button. A value of 1
means button is pressed. A value of 0
means button is not pressed.

150 Appendix

Description Function Coding Example

Set Speed of a Servo Motor
Sets the speed of a servo motor
connected to a PRIZM servo port 1-6.
The speed parameter can be 0 to 100%.
The servo motor channel parameter
can be any number 1 to 6. If not
specified, the speed of a servo defaults
to 100 (maximum speed). When a
servo speed has been set, it will always
move at the set speed until changed.
Unless we are changing speeds, it will
need to be called only once at the
beginning of a program.

setServoSpeed(servo#, speed);

Data Type:
servo# = integer
speed = integer

Data Range:
servo# = 1 to 6
speed = 0 to 100

setServoSpeed(1, 25);
Set the speed of servo channel 1 to 25%.
setServoSpeed(2, 50);
Set the speed of servo channel 2 to 50%.

Set Speeds of All Servo Motors
Sets the speeds of all six servo
channels simultaneously with a
single command. All six speeds are in
sequential order and can be 0 to 100%.
All six servo speeds may be the same
or different.

setServoSpeeds(speed1, speed2,
speed3, speed4, speed5, speed6);

Data Type:
speed1-speed6 = integer

Data Range:
speed1-speed6 = 0 to 100

setServoSpeeds(25, 25, 25, 25, 25, 25);
Set the speeds of all six servo channels
to 25%.
setServoSpeeds(25, 35, 45, 55, 65, 75);
Servo 1 speed = 25%
Servo 2 speed = 35%
Servo 3 speed = 45%
Servo 4 speed = 55%
Servo 5 speed = 65%
Servo 6 speed = 75%

Set Position of a Servo Motor
Sets the angular position of a servo
motor connected to a PRIZM servo
motor port 1-6. The position parameter
can be any value between 0 and
180 degrees. Any value outside this
range is ignored. Not all servos are the
same, so be careful when operating
a servo motor at the extreme ranges.
Listen closely; if a servo is buzzing, it is
pressing against its mechanical stop,
which might damage the motor. If
this happens, limit the range to values
slightly greater than 0 and slightly less
than 180 to avoid damage to the servo
motor.

setServoPosition(servo#, position);

Data Type:
servo# = integer
position = integer

Data Range:
servo# = 1 to 6
position = 0 to 180

setServoPosition(1, 90);
Set the angular position of Servo Motor 1
to 90 degrees.
setServoPosition(2, 130);
Set the angular position of Servo Motor 2
to 130 degrees.

Set Positions of All Servo Motors
Sets the angular positions of all
six servo motors connected to the
PRIZM servo motor ports 1-6. The
position parameter can be any value
between 0 and 180 degrees. Any value
outside this range is ignored. Not all
servos are the same, so be careful
when operating a servo motor at the
extreme ranges. Listen closely; if a
servo is buzzing, it is pressing against
its mechanical stop, which might
damage the motor. If this happens,
limit the range to values slightly
greater than 0 and slightly less than
180 to avoid damage to the servo
motor.

setServoPositions(position1,
position2, position3, position4,
position5, position6);

Data Type:
position1-position6 = integer

Data Range:
position1-position6 = 0 to 180

setServoPositions(90, 90, 90, 90, 90,
90);
Set the angular positions of all six servo
motors connected to PRIZM servo ports
1-6 to 90 degrees.
setServoPositions(10, 20, 30, 40, 50,
60);
Set the angular positions of all six servo
motors connected to PRIZM servo ports
1-6.
Servo 1 position = 10 degrees
Servo 2 position = 20 degrees
Servo 3 position = 30 degrees
Servo 4 position = 40 degrees
Servo 5 position = 50 degrees
Servo 6 position = 60 degrees

Appendix 151

Description Function Coding Example

Read a Servo Position
Reads the most recent commanded
position of a servo motor connected
to PRIZM servo ports 1-6. The value
returned will be 0-180.

readServoPosition(servo#);

Data Type:
servo# = integer

Data Range:
servo# = 1 to 6

Data Type Returned:
value = integer (0 to 180)

readServoPosition(1);
Read the most recent commanded
position of Servo 1.
readServoPosition(2);
Read the most recent commanded
position of Servo 2.

Set Continuous Rotation (CR) State
Sets the on/off and direction state of
a CR servo connected to PRIZM CR1
and CR2 ports. A state parameter of
-100 equals spin counterclockwise.
A state parameter of 100 equals spin
clockwise. A state parameter of 0 is off
or stop. CRservo# parameter can be 1
or 2 commanding either CR1 or CR2
servo ports.

setCRServoState(CRservo#, state);

Data Type:
CRservo# = integer
state = integer

Data Range:
CRservo# = 1 or 2
state = -100, 0, 100

setCRServoState(1, 100);
Spin CR1 servo continuously clockwise.
setCRServoState(1, 0);
Stop CR1 servo.
setCRServoState(1, -100);
Spin CR1 servo continuously
counterclockwise.

152 Appendix

TETRIX PRIZM Arduino Library Functions Cheat Sheet
Below is a reference of each function statement in the TETRIX PRIZM Robotics
Controller Library for Arduino.

PrizmBegin();

PrizmEnd();

setRedLED(HIGH/LOW);

setGreenLED(HIGH/LOW);

setMotorPower(motor#, power);

setMotorPowers(power1, power2);

setMotorSpeed(motor#, speed);

setMotorSpeeds(speed1, speed2);

setMotorTarget(motor#, speed, target);

setMotorTargets(speed1, target1, speed2, target2);

setMotorDegree(motor#, speed, degrees);

setMotorDegrees(speed1, degrees1, speed2, degrees2);

setMotorInvert(motor#, invert);

readMotorBusy(motor#);

readMotorCurrent(motor#);

readEncoderCount(enc#);

readEncoderDegrees(enc#);

resetEncoder(enc#);

resetEncoders();

readLineSensor(port#);

readSonicSensorCM(port#);

readSonicSensorIN(port#);

readBatteryVoltage();

readStartButton();

setServoSpeed(servo#, speed);

setServoSpeeds(speed1, speed2, speed3, speed4, speed5, speed6);

setServoPosition(servo#, position);

setServoPositions(position1, position2, position3, position4, position5, position6);

readServoPosition(servo#);

setCRServoState(CRservo#, state);

Tip: When using these functions
in our code, be sure to prefix each
function with the PRIZM object
name that we choose using the
PRIZM myname statement.

Appendix 153

TETRIX PRIZM Sample Code Library
Example 1: GettingStarted_Act1_Blink_RedLED

Example 2: GettingStarted_Act2_Move_DCMotor

/* PRIZM controller example program
 * Blink the PRIZM red LED at a 1-second flash rate.
 * author PWU on 08/05/2016
*/

 #include <PRIZM.h> // include the PRIZM library

 PRIZM prizm; // instantiate a PRIZM object “prizm” so we can use its functions

void setup() {

 prizm.PrizmBegin(); // initialize the PRIZM controller

}

void loop() { // repeat this code in a loop

 prizm.setRedLED(HIGH); // turn the red LED on
 delay(1000); // wait here for 1,000 ms (1 second)
 prizm.setRedLED(LOW); // turn the red LED off
 delay(1000); // wait here for 1,000 ms (1 second)

}

/* PRIZM controller example program
 * Spin DC Motor Channel 1 for 5 seconds and then coast to a stop.
 * After stopping, wait for 2 seconds and then spin in opposite direction.
 * Continue to repeat until red Reset button is pressed.
 * author PWU on 08/05/2016
*/

 #include <PRIZM.h> // include the PRIZM library in the sketch
 PRIZM prizm; // instantiate a PRIZM object “prizm” so we can use its functions

void setup() {

 prizm.PrizmBegin(); // initialize the PRIZM controller
}

void loop() { // repeat in a loop

 prizm.setMotorPower(1,25); // spin Motor 1 CW at 25% power
 delay(5000); // wait while the motor runs for 5 seconds
 prizm.setMotorPower(1,0); // stop motor (coast to stop)
 delay(2000); // after stopping, wait here for 2 seconds
 prizm.setMotorPower(1,-25); // spin Motor 1 CCW at 25% power
 delay(5000); // wait while the motor runs for 5 seconds
 prizm.setMotorPower(1,0); // stop motor (coast to stop)
 delay(2000); // after stopping, wait here for 2 seconds and then repeat

}

154 Appendix

Example 3: GettingStarted_Act3_Move_Servo

Example 4: GettingStarted_Act4_Intro_LineFinder

/* PRIZM controller example program
 * This program sets the speed of Servo 1 to 25%.
 * Servo 1 is then rotated back and forth between 0- and 180-degree range.
 * author PWU on 08/05/2016
*/

#include <PRIZM.h> // include the PRIZM library in the sketch
PRIZM prizm; // instantiate a PRIZM object “prizm” so we can use its functions

void setup() {

 prizm.PrizmBegin(); // initialize the PRIZM controller
 prizm.setServoSpeed(1,25); // set Servo 1 speed to 25%

}

void loop() { // repeat in a loop

 prizm.setServoPosition(1,180); // rotate Servo 1 to 180 degrees
 delay(3000); // wait for 3 seconds to give Servo 1 time
 // to get to position 180
 prizm.setServoPosition(1,0); // rotate Servo 1 to 0 degrees
 delay(3000); // wait for 3 seconds to give Servo 1 time
 // to get to position 0

}

/* PRIZM controller example program
 * This program will read the digital signal of the Line Finder Sensor attached to digital port D3.
 * If the sensor is facing a reflective surface and receiving a reflected IR beam, the PRIZM red LED
 * will switch on. If the sensor is facing a dark surface or is too far away from a reflective surface,
 * the red LED will be switched off.
*/

 #include <PRIZM.h> // include the PRIZM library
 PRIZM prizm; // instantiate a PRIZM object “prizm” so we can use its functions

void setup() { // this code runs once

 prizm.PrizmBegin(); // initialize PRIZM

}

void loop() { // this code repeats in a loop

 if(prizm.readLineSensor(3) == HIGH) {prizm.setRedLED(LOW);} // LED off

 if(prizm.readLineSensor(3) == LOW) {prizm.setRedLED(HIGH);} // LED on

delay(50); // slow the loop down

}

Appendix 155

Example 5: GettingStarted_Act5_Intro_UltraSonic

Example 6: TaskBot_Act7_Drive_Forward

/* PRIZM controller example program
 * This example program will read the digital signal of the
 * Ultrasonic Sensor attached to the digital sensor port D3.
 * The distance in centimeters of an object placed in front
 * of the sensor will be sent to the serial monitor window.
 */

 #include <PRIZM.h> // include the PRIZM library
 PRIZM prizm; // instantiate a PRIZM object “prizm” so we can use its functions

void setup() { // this code runs once

 prizm.PrizmBegin(); // initialize PRIZM

 Serial.begin(9600); // configure the serial monitor for 9600 baud rate

}

void loop() { // this code repeats in a loop

 Serial.print(prizm.readSonicSensorCM(3)); // print the cm distance to the serial monitor

 Serial.println(" Centimeters"); // print " Centimeters"

 delay(200); // slow down the loop. wait for 200 ms to keep from printing to serial monitor too
fast
}

/* PRIZM controller example program
 * This program will move the PRIZM TaskBot forward for 3 seconds, stop, and end program.
 * author PWU 08/05/2016
 */

 #include <PRIZM.h> // include PRIZM library
 PRIZM prizm; // instantiate a PRIZM object “prizm” so we can use its functions

void setup() {

 prizm.PrizmBegin(); // initialize PRIZM

 prizm.setMotorInvert(1,1); // invert the direction of DC Motor 1
 // to harmonize the direction of opposite-facing drive motors
}

void loop() {

 prizm.setMotorPowers(50,50); // turn Motors 1 and 2 on at 50% power
 delay(3000); // wait here for 3 seconds while motors are spinning
 prizm.PrizmEnd(); // end program and reset PRIZM

}

156 Appendix

Example 7: TaskBot_Act8_Drive_Circle

/* PRIZM controller example program
 * This program will cause the PRIZM TaskBot to drive in a continuous circle.
 * Press the red Reset button to stop the program.
 * author PWU 08/05/2016
 */

 #include <PRIZM.h> // include PRIZM library
 PRIZM prizm; // instantiate a PRIZM object “prizm” so we can use its functions

void setup() {

 prizm.PrizmBegin(); // initialize PRIZM
 prizm.setMotorInvert(1,1); // invert the direction of DC Motor 1 to harmonize direction

}

void loop() {

 prizm.setMotorPowers(50,25); // spin Motor 1 at 50% power and Motor 2 at 25% power,
 // resulting in the robot driving in a clockwise circle
}

Appendix 157

Example 8: TaskBot_Act9_Drive_Square_1

/* PRIZM controller example program
 * This program will move the PRIZM TaskBot in a square driving pattern.
 * author PWU 08/05/2016
*/
 #include <PRIZM.h> // include PRIZM library
 PRIZM prizm; // instantiate a PRIZM object “prizm” so we can use its functions

void setup() {
 prizm.PrizmBegin(); // initialize PRIZM
 prizm.setMotorInvert(1,1); // invert the direction of DC Motor 1 to harmonize the direction
}
void loop() {
 prizm.setMotorPowers(50,50); // go forward at 50% power
 delay(3000); // wait here for 3 seconds while motors spin
 prizm.setMotorPowers(125,125); // stop both motors in brake mode
 delay(1000); // wait here for 1 second
 prizm.setMotorPowers(50,-50); // make a right turn
 delay(600); // wait here for 0.6 seconds while motors spin
 prizm.setMotorPowers(125,125); // stop both motors in brake mode
 delay(1000); // wait here for 1 second
 prizm.setMotorPowers(50,50); // go forward at 50% power
 delay(3000); // wait here for 3 seconds while motors spin
 prizm.setMotorPowers(125,125); // stop both motors in brake mode
 delay(1000); // wait here for 1 second
 prizm.setMotorPowers(50,-50); // make a right turn
 delay(600); // wait here for 0.6 seconds while motors spin
 prizm.setMotorPowers(125,125); // stop both motors in brake mode
 delay(1000); // wait here for 1 second
 prizm.setMotorPowers(50,50); // go forward at 50% power
 delay(3000); // wait here for 3 seconds while motors spin
 prizm.setMotorPowers(125,125); // stop both motors in brake mode
 delay(1000); // wait here for 1 second
 prizm.setMotorPowers(50,-50); // make a right turn
 delay(600); // wait here for 0.6 seconds while motors spin
 prizm.setMotorPowers(125,125); // stop both motors in brake mode
 delay(1000); // wait here for 1 second
 prizm.setMotorPowers(50,50); // go forward at 50% power
 delay(3000); // wait here for 3 seconds while motors spin
 prizm.setMotorPowers(125,125); // stop both motors in brake mode
 delay(1000); // wait here for 1 second
 prizm.PrizmEnd(); // end program and reset PRIZM
}

158 Appendix

Example 9: TaskBot_Act10_Drive_Square_2

/* PRIZM controller example program
 * This program will move the TaskBot in a square driving pattern using a forward and right turn function.
 * author PWU 08/05/2016
 */
 #include <PRIZM.h> // include PRIZM library
 PRIZM prizm; // instantiate a PRIZM object “prizm” so we can use its functions

void setup() {

 prizm.PrizmBegin(); // initialize PRIZM
 prizm.setMotorInvert(1,1); // invert the direction of DC Motor 1 to harmonize direction

}

void loop() {

for(int x=0; x<=3; x++) { // do this four times, increment x by +1
 forward();
 rightTurn();
 }
 prizm.PrizmEnd();
}

void forward() { // function to go forward
 prizm.setMotorPowers(50,50); // go forward at 50% power
 delay(3000); // wait here for 3 seconds while motors spin
 prizm.setMotorPowers(125,125); // stop both motors in brake mode
 delay(1000); // wait here for 1 second

 }

void rightTurn() { // function for a right turn
 prizm.setMotorPowers(50,-50); // make a right turn
 delay(600); // wait here for 0.6 seconds while motors spin
 prizm.setMotorPowers(125,125); // stop both motors in brake mode
 delay(1000); // wait here for 1 second

 }

Appendix 159

Example 10: TaskBot_Act11_Drive_To_Line

/* PRIZM controller example program
 * This program will move the PRIZM TaskBot forward on a white surface until it detects a black
 * line. When the line is detected, the robot will stop.
 * Connect the Line Finder Sensor to digital port D3.
 * author PWU 08/05/2016
*/

 #include <PRIZM.h> // include PRIZM library
 PRIZM prizm; // instantiate a PRIZM object “prizm” so we can use its functions

void setup() {

 prizm.PrizmBegin(); // initialize PRIZM

 prizm.setMotorInvert(1,1); // invert the direction of DC Motor 1
 // to harmonize the direction of
 // opposite-facing drive motors
}

void loop() {

 if(prizm.readLineSensor(3) == 0) { // when sensor is receiving reflected light beam
 prizm.setMotorPowers(35,35); // turn Motors 1 and 2 on at 35% power if light beam is detected

 }

 if(prizm.readLineSensor(3) == 1) { // when sensor detects black stripe
 prizm.setMotorPowers(125,125); // stop motors in brake mode if black line is detected

 while(1) { // infinite loop – stays locked in this loop until Reset is pressed
 prizm.setRedLED(HIGH); // flash PRIZM red LED on and off until reset
 delay(500);
 prizm.setRedLED(LOW);
 delay(500);
 }
 }
}

160 Appendix

Example 11: TaskBot_Act12_Follow_A_Line

/* PRIZM controller example program
 * This program implements line following with the PRIZM TaskBot. Using the Line Finder Sensor
 * on sensor port D3, the robot will follow the edge of a black stripe on a white surface.
 * The program will power one motor at a time, resulting in back-and-forth forward motion to
 * keep the robot traversing the line edge.
 * author PWU 08/05/2016
 */

 #include <PRIZM.h> // include PRIZM library
 PRIZM prizm; // instantiate a PRIZM object “prizm” so we can use its functions

void setup() {

 prizm.PrizmBegin(); // initialize PRIZM

 prizm.setMotorInvert(1,1); // invert the direction of DC Motor 1
 // to harmonize the direction of
 // opposite-facing drive motors
}

void loop() {

 // beam reflected, no line detected
 if(prizm.readLineSensor(3) == 0) {prizm.setMotorPowers(125,30); prizm.setRedLED(LOW);}

 // no reflected beam, line detected
 if(prizm.readLineSensor(3) == 1) {prizm.setMotorPowers(30,125); prizm.setRedLED(HIGH);}

}

Appendix 161

Example 12: TaskBot_Act13_Drive_To_Wall

/* PRIZM controller example program
 * This program uses the Ultrasonic Sensor connected to
 * sensor port D4 to detect an obstacle in its driving path
 * within 25 cm. When detected, the robot will stop and wait
 * for the object blocking its path to be cleared.
 * author PWU 08/05/2016
 */

 #include <PRIZM.h> // include PRIZM library
 PRIZM prizm; // instantiate a PRIZM object “prizm” so we can use its functions

void setup() {

 prizm.PrizmBegin(); // initialize PRIZM

 prizm.setMotorInvert(1,1); // invert the direction of DC Motor 1
 // to harmonize the direction of
 // opposite-facing drive motors
}

void loop() {

 if(prizm.readSonicSensorCM(4) > 25)
 {
 prizm.setMotorPowers(50,50); // if distance greater than 25 cm, do this
 }
 else
 {
 prizm.setMotorPowers(125,125); // if distance less than 25 cm, do this
 }
}

162 Appendix

Example 13: TaskBot_Act14_Avoid_Obstacle

/* PRIZM controller example program
 * This program uses the Ultrasonic Sensor connected to sensor port D4 to detect objects in its
 * driving path. When an object is detected, the robot will stop, back up, make a right turn, and continue.
 * author PWU 08/05/2016
 */

 #include <PRIZM.h> // include PRIZM library
 PRIZM prizm; // instantiate a PRIZM object “prizm” so we can use its functions

void setup() {

 prizm.PrizmBegin(); // initialize PRIZM

 prizm.setMotorInvert(1,1); // invert the direction of DC Motor 1
 // to harmonize the direction of
 // opposite-facing drive motors
}

void loop() {

 if(prizm.readSonicSensorCM(4) > 25) // obstacle sense range set at 25 centimeters
 {
 prizm.setMotorPowers(35,35); // forward while no obstacle detected
 prizm.setRedLED(LOW); // turn off red LED
 prizm.setGreenLED(HIGH); // turn on green LED
 }
 else
 {
 prizm.setGreenLED(LOW); // turn off green LED
 prizm.setRedLED(HIGH); // detected obstacle, turn on red LED
 prizm.setMotorPowers(125,125); // stop, obstacle detected
 delay(500);
 prizm.setMotorPowers(-35,-35); // back up
 delay(1000);
 prizm.setMotorPowers(125,125); // stop
 delay(500);
 prizm.setMotorPowers(35,-35); // make a right turn
 delay(500);

 }
}

Appendix 163

Example 14: TaskBot_Act15_Combining_Sensors

/* PRIZM controller example program
 * This program uses the Line Finder and the Ultrasonic Sensors at the same time.
 * The robot will follow the edge of a black line (stripe) on a white surface and scan for an object
 * in its path. When an obstacle is detected, it will wait for the obstacle to be cleared and then continue.
 * The line sensor is connected to digital port D4. The Ultrasonic Sensor is connected to
 * digital port D4. The red LED shows the line sensor status. The green LED shows the
 * sonic Sensor status.
 * author PWU 08/05/2016
 */

 #include <PRIZM.h> // include PRIZM library
 PRIZM prizm; // instantiate a PRIZM object “prizm” so we can use its functions

void setup() {

 prizm.PrizmBegin(); // initialize PRIZM
 prizm.setMotorInvert(1,1); // invert the direction of DC Motor 1
 // to harmonize the direction of
 // opposite-facing drive motors
 prizm.setServoSpeed(1,50); // set Servo 1 speed to 50
}

void loop() {
 if(prizm.readLineSensor(3) == 1) {
 prizm.setMotorPowers(30,125); // line detected
 prizm.setRedLED(HIGH);
 }
 else
 {
 prizm.setMotorPowers(125,30); // no line detected
 prizm.setRedLED(LOW);
 }

 while(prizm.readSonicSensorCM(4) < 25) { // object is in path, loop here until cleared
 prizm.setGreenLED(HIGH); // turn on green LED
 prizm.setMotorPowers(125,125); // stop, obstacle detected
 prizm.setServoPosition(1,0); // raise detection flag!
 }

 prizm.setGreenLED(LOW); // turn off green LED
 prizm.setServoPosition(1,90); // lower flag position
}

164 Appendix

Call Toll-Free
800•835•0686

Visit Us Online at
Pitsco.com

TETRIX® PRIZM® Robotics Controller
Programming Guide

	44716_PRIZM_Programming_Guide_COVERS
	44716_PRIZM_Programming_Guide_GUTS

