
44301

TETRIX® PULSE™ Robotics Controller
Programming Guide

Content advising by Tammy Pankey, Paul Uttley, and Tim Lankford.

Build creation and SolidWorks® Composer™ and KeyShot® renderings by Tim Lankford, Brian Eckelberry, and Jason Redd.
Desktop publishing by Todd McGeorge.

©2017 Pitsco, Inc., 915 E. Jefferson, Pittsburg, KS 66762

All rights reserved. This product and related documentation are protected by copyright and are distributed under licenses
restricting their use, copying, and distribution. No part of this product or related documentation may be reproduced in any
form by any means without prior written authorization of Pitsco, Inc.

All other product names mentioned herein might be the trademarks of their respective owners.

Check Pitsco.com/TETRIX-PULSE-Robotics-Controller#resources for PDF updates of this guide.
V1.1
7/18

44301

Table of Contents
Preface ..2

TETRIX® PULSE™ Robotics Controller Introduction ...3

PULSE Controller Technology Overview ..4-6

PULSE Setup ...7-8

Software Overview ...9

Software Setup ..10-23

Getting Started Activities ...24

 Activity 1: Hello World! .. 25-28

 Activity 2: Moving Your DC Motors.. 29-32

 Activity 3: Moving Your Servo Motors .. 33-36

 Activity 4: Introduction to the Line Finder Sensor .. 37-40

 Activity 5: Introduction to the Ultrasonic Sensor .. 41-44

Building and Coding the PULSE Codee Bot ...45

 Hardware Overview ... 46-68

 Activity 6: Build the PULSE Codee Bot ... 69-87

 Activity 7: Drive Forward .. 88-91

 Activity 8: Drive in a Circle ... 92-94

 Activity 9: Drive in a Square .. 95-99

 Activity 10: Simplify the Square ... 100-103

 Activity 11: Drive to a Line and Stop .. 104-107

 Activity 12: Follow a Line .. 108-111

 Activity 13: Drive Toward a Wall and Stop ... 112-115

 Activity 14: Avoiding Obstacles ... 116-118

 Activity 15: Combining the Sensors ... 119-122

 Build, Code, Test, Learn . . . Go! .. 123

Appendix
 Scope and Sequence ... 124

 Standards Addressed .. 125

 Glossary .. 126-127

 Getting Started Extension Activities .. 128-129

 Careers Complete Listing ... 130

 TETRIX PULSE Robotics Controller Technical Specifications ... 131

 TETRIX PULSE Controller Sensor Port Pinout Diagrams ... 132-133

 TETRIX PULSE Arduino Library Functions Chart ... 134-140

 TETRIX PULSE Arduino Library Functions Cheat Sheet ... 141

 TETRIX PULSE Controller Wiring Diagram ... 142

44301

Preface
This programming guide has been developed to provide students with positive experiences in robotics engineering and
programming. With the assistance of this guide, students will learn to use the TETRIX® PRIME parts to construct different
robots while learning about programming with the PULSE controller. After using this guide, students should be able to use
the TETRIX PRIME parts to construct a robot of their own design.

Grade Level Appropriateness
The activities used in this guide are targeted toward middle school students. With some additional instruction, upper-
elementary students should be able to successfully complete the activities. Additionally, secondary teachers could use
these parts to provide an exploratory experience in engineering.

Using This Guide
The activities in this guide build upon each other. The activities should be completed in the order in which they are
presented. Concepts explored in one activity might not be repeated in later activities, but students could be required to
understand the concepts in order to be most successful.

Safety Information
Mechanical

• Keep fingers, hair, and loose articles of clothing clear of gears and moving parts.

• Never pick up the robot while it is moving or the servo motors are running.

Electrical

• Make sure the power is turned off when the robot is not in operation.

• Do not operate the robot in a wet environment.

• Always power down the robot before making any changes.

• Use caution when working with bare wires to avoid creating a short circuit situation.

• Route wires carefully, and secure them if necessary to avoid damage to the wire or its insulation.

• Mount the battery pack securely.

2 Getting Started

Welcome to Coding with PULSE™
and Building with TETRIX PRIME!

My name is Codee!
I’ll follow your every
command.

PULSE Controller Introduction
Pitsco Education is pleased to bring you the TETRIX® PULSE™ Robotics Controller Programming Guide – an exciting and
progressive series of activities that teaches the essentials of learning to program your TETRIX PRIME creations using the
PULSE controller and the graphic-based TETRIX Ardublockly software.

This programming guide offers a valuable tool for teaching students and teachers how to use the PULSE controller (the
brain) and the TETRIX PRIME system to build and code smart, precise robots that are as real world as it gets. The guide
comes with five getting started activities, step-by-step building instructions for creating a Codee Bot, 10 complete Codee
Bot-oriented lessons, and extension activities. This is a great tool for exploring the functionality of the PULSE controller,
TETRIX hardware components, and software. Your students are offered a great foundation to build on.

By combining the plug-and-play PULSE controller with the intuitive PRIME building system and an easy-to-use, graphic-
based software environment, this solution offers a great entry into teaching and learning through robotics. The progressive
nature of the activities enables robotic creations to come to life quickly and easily, meaning students can experience instant
success and focus more classroom time on problem solving and applying their STEM knowledge.

Plus, PULSE is not just a great tool for teaching programming. It can bring to life lessons on sensors, power, gear ratios, and
more. Even the controller’s clear polycarbonate shield was designed to maximize educational value – letting users see the
inner architecture of the controller.

We have also included some STEM connections (concepts beyond the scope of this guide) that can be covered in each
lesson if you choose to do so. These connections can be incorporated if you have content knowledge of these concepts or if
you can work with other teachers to integrate these concepts.

We hope this guide offers a great jumping-off point to learning with PULSE. We cannot wait to see the innovative projects
and robotic creations that result.

Getting Started 3

PULSE Controller Technology Overview

PULSE Robotics Controller:
A programmable device that is the brain of the TETRIX PRIME robot

6 standard control servo ports

2 quadrature
encoder input ports

Battery connection port

2 DC motor control ports

Power
switch

Start
button

Stop/Reset
button

USB
programming

port

i2C port

3 digital
sensor ports

3 analog
sensor ports

Tip: For complete, detailed specifications, please refer to the TETRIX PULSE
Robotics Controller Specifications located in the appendix on page 131.

4 Getting Started

PULSE Controller Technology Overview

Getting Started 5

Ultrasonic Sensor:
Enables a robot to measure
distance to an object and
respond to movement

DC Motor:
Allows for speed and
torque

Standard Servo Motor:
Allows for exact
positioning within a
180-degree range of
motion

Line Finder Sensor:
Enables a robot to follow
a black line on a white
background or vice versa

Sensor:
A device that detects surrounding environmental factors for the controller

Motor:
A machine that produces motion or power for completing work

6 Getting Started

Attaching the Sensors:
To connect a sensor to the PULSE, plug the
end of the sensor wire into ports labeled
D2-D4 for digital sensors, A1-A3 for analog
sensors, or I2C for I2C components.

Attaching the DC Motors:
To connect a DC motor to the PULSE, plug
the end of the DC motor wire into one of
the two DC motor ports.

Important: The black wire end must be
closest to the minus sign on the controller.

Attaching the Servo Motors:
To connect a standard servo motor to the
PULSE, plug the end of the servo motor wire
into one of the servo ports

Important: The black wire end must be
closest to the minus sign on the controller.

PULSE Setup

Getting Started 7

Warning: Do not attempt to use third-party battery packs with the PULSE
controller. The TETRIX battery packs are equipped with a safety fuse and are
the only packs approved for use with the system. Damage to the product as a
result of doing so will void your warranty.

Downloading and Uploading:
The PULSE USB port is used for
communication between PULSE and a
Windows or Macintosh device.

The port enables users to download and
upload data from the computer to the PULSE
controller.

To upload a program to the PULSE, plug one
end of the USB cable into the controller’s USB
port and plug the other end into a USB port
on your device.

Attaching the Battery to the PULSE:
The PULSE controller is powered by a
TETRIX 6-Volt Rechargeable NiMH Battery
Pack.

To connect the battery pack to the PULSE,
plug the end of the battery wire into the
battery port located on the controller.

Important: The black wire end must be
closest to the minus sign on the controller.

8 Getting Started

Software Overview
• The TETRIX Ardublockly software is a special programming interface created

by Pitsco for exclusive use with the PULSE controller. The TETRIX Ardublockly
software was developed using the Google interface called Blockly.

• It can be used on a variety of Windows and Macintosh devices. The software
is placed on the hard drive of a device. The device used must have a USB
port for connection to the PULSE controller. It is not supported on tablets or
Chromebooks.

• The Arduino Software (IDE) will be used to communicate with the PULSE in the
background. You don’t need to open the Arduino Software (IDE) to create your
programs. It only needs to be installed on the computer. The PULSE controller
can be programmed through the Arduino Software (IDE), but for this guide, all
programming will occur within the TETRIX Ardublockly software.

• Within the TETRIX Ardublockly software, a program is referred to as a sketch.
Each of the activities in this guide will involve creating a sketch that gives
instructions to the robot.

• For the purposes of this guide, we will focus on the basics of using the
TETRIX Ardublockly software as it applies to the PULSE controller. Working
through examples and hands-on application of code using a small Codee Bot
constructed with the TETRIX PRIME robotics building system will show you
how easy it is to use TETRIX Ardublockly with PULSE.

Note: This is not meant to be
a tutorial on programming
with the Arduino C-based
language. There are
many excellent resources
available on the web to
learn more about advanced
programming skills. If you are
interested in such resources,
a good place to start would
be the Arduino website at
www.arduino.cc.

Getting Started 9

Arduino Software (IDE) Setup
The first thing we need to do is install the Arduino Software (IDE). The software can
be found at the Arduino website (www.arduino.cc) for Windows and Macintosh
operating systems. From the Arduino homepage, click the Software tab. On the
Software page, select the download for your operating system and follow any
additional instructions.

Installing the PULSE Controller Library

Adding custom libraries can expand the usability of the Arduino Software (IDE).
Libraries are collections of code that make it easier to create a program, or, as
Arduino calls it, a sketch. After you have successfully installed the Arduino Software
(IDE), you must add the Arduino PULSE controller library. The PULSE controller
library contains special programs written for the TETRIX PULSE controller.

The PULSE library is distributed as a .zip file: TETRIX_PULSE.zip. The first step is to
download the PULSE library from the TETRIX website. We can find the library at
Pitsco.com/TETRIX-PULSE-Robotics-Controller#downloads.

After the library has been downloaded, there are two ways to install the PULSE
library into the Arduino Software (IDE).

Importing a .zip Library

One way is to import it using the Arduino Software (IDE) Add .ZIP Library menu
option.

In the Arduino Software (IDE), navigate to Sketch > Include Library. From the drop-
down menu, select Add .ZIP Library (Figure 1).

Figure 1

Note: All instructions and screen
shots used throughout this guide
are based on the 1.8.2 version
of the Arduino Software (IDE).
Instructions and views might
slightly vary based on the platform
and version you are using.

Tip: Figures within this section
show typical installation within
Windows. The look and file
locations within the Mac operating
system might vary.

Teacher note:
• Depending on your classroom

and IT situation, you might want
to download and install the
Arduino Software (IDE) and the
TETRIX PULSE Arduino Library
on the computers you and your
students will be using.

• It is recommended that you
organize the class into teams
of two. It is recommended that
you go through each process
before students do. This will
enable you to have a good
understanding of what student
questions might arise and how
to answer those questions.

10 Getting Started

You will be prompted to select the library you would like to add. Navigate to the
location where you saved the TETRIX_PULSE.zip library file, select it, and open it
(Figure 2).

Return to the Sketch > Include Library menu. You should now see the library at
the bottom of the drop-down menu. It is ready to be used in our sketches; however,
example sketches for the library will not appear in the File > Examples menu until
after the Arduino Software (IDE) has been restarted.

Manual Installation

To install the PULSE library manually, first close the Arduino Software (IDE)
application. Then, extract the .zip file TETRIX_PULSE.zip containing the library. After
the folder is extracted, drag or copy the TETRIX_PULSE folder into the Arduino
libraries folder.

For Windows users, it will likely be called Documents\Arduino\libraries.

For Mac users, it will likely be called Documents/Arduino/libraries.

Restart the Arduino Software (IDE). Make sure the TETRIX_PULSE library appears in
the Sketch > Include Library menu of the software.

In addition, several PULSE sketch examples will now appear in the File >
Examples > TETRIX_PULSE drop-down menu.

That’s it! We have successfully installed the PULSE Arduino library.

Figure 2

Getting Started 11

Configuring USB Communication

PULSE and the Arduino Software (IDE) will communicate with each other through
the computer’s USB port.

Therefore, before we can begin programming, we first need to be sure that the
PULSE controller is properly set up in the Arduino Software (IDE) for communication
over the USB port.

The easiest way to do this is to first start the Arduino Software (IDE) and navigate to
Tools > Board and select Arduino/Genuino Uno (Figure 3). The PULSE controller
uses the same processor chip as a genuine Arduino UNO, so this is the board you
will select.

Figure 3

12 Getting Started

Next, without the PULSE connected, navigate to Tools > Port and check the
current connections. If there are no current connections detected, the word Port will
be grayed out. If there are connections detected, take note of the COM ports that
are listed.

Next, plug the PULSE controller into a USB port and power it up by connecting the
TETRIX battery pack and turning the power switch on.

With power applied, the blue power indicator LED will be lit. Be sure to give the
PULSE controller time to complete the first-time connect installation. This could
take 5-10 seconds. After the PULSE has been connected and installed, it will be
assigned a COM port by the computer system.

Navigate to Tools > Port and select the newly installed COM port. The new COM
port will be the PULSE. By selecting the new COM port, you are telling the Arduino
Software (IDE) to use this port for communications. The COM port you use could be
different from the one in Figure 4.

Figure 4: Port drop-down menu with PULSE not connected.
Please note that lists might vary.

Getting Started 13

The new port that appears in this example is COM1. Select the new port item to
tell the Arduino Software (IDE) to use this port for communications. Your port will
likely be different, and that is OK. When the communications port has been set up,
communications with the PULSE controller have been enabled.

When this step is complete, our computer system will automatically default to
this selected port each time we plug in our PULSE controller and start the Arduino
Software (IDE).

Note: Other devices connected
to the computer, such as a cell
phone, might show up as a COM
port as well. You might have to
go back into the Arduino Software
(IDE) if you have another device
connected at the same time to
ensure the right COM port is
selected.

Tip: Each PULSE unit will use a
different COM port on the same
computer. For each new PULSE
that is connected, follow the
steps for numbering controllers
and matching to the computer as
detailed above. You can number
each PULSE controller and assign
it to a corresponding computer.
This will facilitate the computer
selecting the correct port for
PULSE each time it is connected
and powered up.

14 Getting Started

Figure 5

TETRIX Ardublockly Software Setup

The TETRIX Ardublockly software is distributed as a .zip file: TETRIX_Ardublockly.
zip. There is a version for the Windows operating system and a version for the Mac
operating system. The first step is to download the appropriate version for your
device from the TETRIX website. You can find the library at Pitsco.com/TETRIX-
PULSE-Robotics-Controller#downloads.

Place the downloaded file on the hard drive of your machine. Choose to extract the
zipped folder (Figure 5).

Locate the ardublockly_run file (Figure 6).

Create a shortcut and place it on your desktop (Figure 7). Do not delete the
extracted folder. It must remain on your machine to run the software.

Figure 6

Figure 7

Note: This software will not work
on a 32-bit Windows machine.

Getting Started 15

You will see the TETRIX Ardublockly icon show up on your desktop while it’s loading
the software (Figure 8).

When the software is loaded, you should see this screen (Figure 9).

Navigate to Edit > Preferences (Figure 10).

Figure 8

Figure 9

Figure 10

16 Getting Started

You will need to adjust the settings in the software. Make sure the compiler location
links to where the Arduino Software (IDE) is located on your device (Figure 11).

Click below Compiler Location.

Choose your operating system folder (Figure 12).

Figure 11

Figure 12

Getting Started 17

Find the Arduino program files. Select the Arduino application (Figure 13).

Click below Sketch Folder. Choose which location the sketch folder will save to. You
can save to your Documents folder or another location on your device (Figure 14).

Figure 13

Figure 14

18 Getting Started

The Arduino board should be Uno (Figure 15).

Adjust the COM port to whichever port the PULSE controller is associated with
(Figure 16).

When this step is complete, your PULSE controller is connected to the TETRIX
Ardublockly software and coding can begin.

Figure 15

Figure 16

Getting Started 19

TETRIX Ardublockly Introduction

Software Basics:

This is the main interface you will use when you open the software. On the far-left
side is the tool palette. To hide the tool palette, click the eye icon on the top of the
bar. This tool palette contains two different types of blocks. These are blocks that
were specifically created for use with the PULSE controller. The Arduino blocks can
also be used for additional functions and programming.

In the middle is the programming space. This is where you will place your blocks
to create your program. On the bottom right of the programming space, there is a
trash can where you can place blocks to delete them. Also, the plus and minus signs
allow you to zoom in and out of the programming space. The bull’s-eye will center
the programming space to where your blocks are placed.

On the top right of the programming space, there are three buttons. One button is
Open Sketch, which allows you to open your sketch in the Arduino Software (IDE).
Your program will be opened in syntax format. You can edit the syntax code within
Arduino Software (IDE) if desired. This process will not be covered in this guide. The
Verify button allows you to check your sketch to ensure that your program has no
errors. The final button is Upload. This is the button that transfers your program to
the PULSE controller (Figure 17).

The far-right side shows the text-based Arduino source code. You can’t edit the
source code. You can hide the source code bar if desired.

On the very bottom of the screen, there is the Arduino IDE output command bar. It
defaults to being hidden. If you click anywhere along the bottom bar, it will open
the status bar. This provides real-time information on the status of an upload.

To name your program, click where it says Sketch_Name and type in your file
name. You must click Save to keep a copy of the program you create. If you are
opening an existing file, you can click Open.

Figure 17

Open Sketch Upload Sketch

Verify

Note: These buttons will change
order to show the last button
action chosen.

20 Getting Started

PULSE Blocks:

Control

Initializes the PULSE Robotics Controller

Immediately terminates the program

Defines the Arduino setup() and loop() functions

Sets the state of the PULSE red LED

Sets the state of the PULSE yellow LED

Sets the state of the PULSE green LED

Reads the state of the PULSE Start button

Reads the battery pack voltage

Waits for a specific time in milliseconds

Waits for a specific time in microseconds

Waits indefinitely, infinite loop

Time element (mini block that is attached to other blocks and edited)

Figure 18

Getting Started 21

Motors

Sets the power and direction of the DC motor; the power range is -100 to 100

Sets the power and direction of DC Motors 1 and 2

Inverts the rotational direction of the selected motor channel

Time element

Servos

Sets the speed of the selected servo motor channel

Sets the speeds of all six servo motor channels

Sets the position of the selected servo to a position between 0 and 180 degrees

Sets the positions of all six servo motor channels

Reads the position of the selected servo and stores it in a variable

Time element

Figure 20

Figure 19

Figure 21

Sensors

Reads the output value of the Line Finder Sensor

Reads the output value of the Ultrasonic Sensor
in centimeters or inches

Tip: There are a variety of
additional blocks that perform
specific functions in the Arduino
drop-down menu.

22 Getting Started

Troubleshooting Tips:

• Your sketch always has to start with the pulse Begin block. If you want to
end a program, you can use the pulse End block or press the red Stop/Reset
button on the controller.

• If your sketch won’t load onto the PULSE controller, try disconnecting the USB
cable and reconnecting it. You can also try closing the software and opening
it again.

• Open your sketch in the Arduino IDE output window to see if you have
coding errors.

• Remember that you can use the resources in the appendix if you need
additional information.

• Want to see it in action? You can by watching the RoboBench video series for
the PULSE Programming Guide. You can find the entire series at
video.pitsco.com/TETRIX or on the Pitsco YouTube channel.

Getting Started 23

Getting Started Activities
Now, it is time to get started with the activities. Each of the five getting started
activities is designed to introduce you to the TETRIX Ardublockly software and how
it works with the PULSE and select basic hardware. Success with these first five
activities will demonstrate how easy it is to use TETRIX Ardublockly software with the
PULSE and prepare you for coding the PULSE Codee Bot.

The TETRIX Ardublockly Sketch

As you begin creating your first sketch, it is necessary to understand some basic
rules about sketches. It is best to think of a sketch as a list of instructions to be
carried out in the order that they are written down. Each sketch will have several
instructions, and typically each instruction will be one block within the sketch.

Each block also represents lines of text known as code, which is why programming
is sometimes called coding. Text-based programming is also known as syntax
programming. TETRIX Ardublockly uses visual programming, also known as graphic
programming.

Many times, the best way to learn how to code is by following an example. In the
following activities, you will work through several coding examples to better learn
how to create sketches and upload them to the PULSE controller.

Note: If you are already
comfortable with coding in
Arduino sketches and want to
jump ahead, an overview of each
library function can still be a
helpful starting point. We have
created and included definitions
of the functions along with
descriptions that show how each
would appear in an Arduino
sketch. You can find these in the
appendix of this guide on pages
132-138. More library functions
might be added in the future as
the library is updated to newer
versions.

Note: In addition to the PULSE
library, there is an entire collection
of Arduino language commands
that are necessary to understand
before we can create functional
programs. The Arduino language
reference as well as numerous
language learning tutorials can
be found by visiting the Arduino
homepage at
www.arduino.cc.

24 Getting Started Activities

Activity 1: Hello World!
Introduction

You will create a simple program, or sketch, that will blink the red LED on the
PULSE controller. Think of the controller as if it’s winking at you! This activity is the
equivalent of a Hello World! program, which is usually the intro activity for any new
programmer. The sketch you will create is a simple and basic PULSE code. All you
need is the PULSE controller, a power source, and a USB connection to the computer.

Figure 22

Open the Program

Let’s start by looking at the first example sketch. Open the sketch by selecting
Examples > GS_Activity_1. A new sketch window will open titled GS_Activity_1
(Figure 22).

Parts Needed

1x
6 V NiMH Battery

Pack 40235

1x
TETRIX® PULSE™
Controller 44268

1x
3-Foot Type A-B USB

Cable 40967

1x
Computer

Tip: Can’t find the program? Check
the Arduino Software (IDE) Setup
section on pages 10-11.

Getting Started Activities 25

Background

Before you can upload the sketch to the PULSE, you need to make sure the PULSE
has power, is connected to the computer, and is detected by the computer.

When the PULSE is connected as shown, turn on the PULSE with the on/off switch.
You will know the PULSE has power by the glowing blue light.

Watch the Upload Sketch button. A colored line will spin around the circle while the
upload is in progress (Figure 25). Be patient!

As the data uploads, the yellow LEDs on the PULSE controller will flash. When the
upload is finished, there will be a solid green LED light beside the red Stop/Reset
button. The green LED means the code is ready to execute. Press the green Start
button to execute the code. The red LED next to the Stop/Reset button will blink off
and on in one-second intervals. To stop the program, press the Stop/Reset button.

Congratulations! You have successfully uploaded your first sketch to the PULSE and
demonstrated the results to the world.

Execute the Code

To upload the sketch to the PULSE, click Upload Sketch (Figure 23). To check the
status of the upload, click Arduino IDE output on the bottom of the program (Figure
24).

Figure 25Figure 23 Figure 24

Tip: To see if the PULSE is detected
by the computer, check the port
as you did in the Configuring USB
Communication section on pages
12-14.

Tip: Wait, why is the time in
milliseconds? Programmers use
milliseconds for more precise
timing. 1,000 milliseconds equal
1 second.

26 Getting Started Activities

Figure 26

Every program starts with a setup-loop block. Under the setup portion of the
block, the pulse Begin block always comes first. Any other blocks that need to be
set up only once are placed here. Blocks that will occur in a continuous loop in the
program are placed in the loop portion of the block.

In this example, the turning on and off of the red LED occurs over and over because
it is in a loop. Only terminating the program stops the program loop (Figure 27).

Further Investigate

Look at the right side of the program. You see text with different punctuation. This
is called syntax, or text-based programming. Each block in the sketch is typically
represented by one line of text. Lines of text within a sketch are also known as code,
which is why programming is sometimes called coding.

You can change some parameters in the sketch to see how they affect the behavior
of the red LED. The wait block determines how long the LED will be on and off
(Figure 26). This is a parameter you can change in your sketch. Experiment with
changing those values to create new blinking behaviors for the LED. Try making the
LED blink faster or slower.

Extension Activity

With the example as a reference, try creating the blinking LED in a new sketch.
Instead of just blinking the red LED, try to blink the green LED too.

Flashing or blinking lights can be used for signaling or long-distance
communication. Challenge yourself to create a sequence of blinking LED lights like
a stoplight.

To start a new sketch, select File > New. Place the appropriate blocks into the
sketch. When you create your own sketch, there is a built-in software tool to help
ensure your code is free of errors. You can check your program by clicking Verify
the Sketch (Figure 28).

This will cause the code to compile but not upload. If there are errors in the code,
they will be displayed in the compiler error window at the bottom of the sketch
window (Figure 29). Errors will need to be corrected before code can be uploaded
to the PULSE controller.

Figure 28 Figure 29

Figure 27

Tip: The time block is located
under the Motors category in the
software.

Getting Started Activities 27

If there are no errors, the compiler will complete and indicate that it is done
compiling, and you can upload your code. Click the Upload the Sketch button on
the sketch and see if you were able to simulate a stoplight.

Real-World Link

Think about the world around you. What things use blinking or flashing lights?
There are many examples such as traffic lights, holiday lights, and police lights. They
can serve as a warning or draw attention.

Careers: traffic technician, traffic light engineer, electronic engineer

STEM Connections

• Science

 Ĕ Electricity

 Ĕ LED lighting

• Technology

 Ĕ Electronic design

 Ĕ Traffic light programming

• Engineering

 Ĕ Lighting types

 Ĕ Optics

• Math

 Ĕ Frequency

 Ĕ Pattern

Block-Text Correlation

Arduino Source Code

#include <PULSE.h>
PULSE pulse;

void setup() {
pulse.PulseBegin();
}

void loop() {
pulse.setRedLED(HIGH);
delay(1000);
pulse.setRedLED(LOW);
delay(1000);

}

void setup() {

pulse.PulseBegin();

void loop() {
pulse.setRedLED(HIGH);

delay(1000);

pulse.setRedLED(LOW);

delay(1000);

Tip: To solve this extension
activity, you can find a sample
sketch in the appendix titled GS_
Activity_1_Extension_Example.

Note: Notice that On
means High and Off
means Low.

28 Getting Started Activities

Activity 2: Moving Your DC Motors
Introduction

For your second activity, you will add an element of motion. You will create a sketch
that will rotate a DC motor.

Figure 30

Open the Program

Before you open your next example sketch, be sure to save any sketch you want
to reference later. Let’s start by looking at the example sketch. Open the sketch by
selecting Examples > GS_Activity_2. A new sketch window will open titled GS_
Activity_2 (Figure 30).

Parts Needed

1x
6 V NiMH Battery

Pack 40235

1x
PULSE™ Controller

44268

1x
3-Foot Type A-B USB

Cable 40967

1x
Computer

1x
DC Motor 44298 with

Servo Mounting Bracket
40232 (Assembly

instructions on pages
54-55)

Getting Started Activities 29

Background

The intent of this sketch is to spin a DC motor for five seconds and then stop. Then,
the motor will spin in the opposite direction for five seconds. The motor will operate
at half power. This behavior will continue until the Stop/Reset button is pressed.

Execute the Code

Before you can upload the sketch to the PULSE, remember to check your
connections. Keep in mind that you added a new connection with the motor. Plug
the end of the wire that extends from the DC motor into the DC Motor 1 port.

Upload the sketch. The green LED will light up, indicating that the code is ready
to execute. When this has happened, press the green Start button on the PULSE
controller.

Observe the direction and duration of the motor rotation. Did the motor’s behavior
match the intended program? Press the Stop/Reset button when you are ready to
stop the motor.

Further Investigate

The pulse Set Motor Power blocks allow you to adjust the percentage of power the
motor has. It can range from 0 (no power) to 100 (full power). If you wanted half
power, you would set the power to 50 (Figure 31).

Figure 31

Tip: What’s the difference
between a DC motor and a servo
motor? A DC motor has two wires
and can rotate continuously. A
TETRIX servo motor has three
wires and can be placed into
different positions but can’t
rotate beyond 180 degrees.

30 Getting Started Activities

When the program is running, you will see a green light by the motor cord when
the motor is going backward, or counterclockwise. Within the sketch, this motor
direction is represented by a negative value (Figure 33).

Practice changing the parameters in the sketch. You can change the motor power,
motor direction, stopping behavior, and delay between actions. Observe the effect
these changes have on the motor.

Extension Activity

With the example as a reference, try creating a new sketch using your DC motor
and LEDs on the controller. Remember what you learned from your first activity and
come up with a creative way to include blinking LEDs with your rotating motor.

Figure 32

Figure 33

When the program is running, you will see a red light by the motor cord when
the motor is going forward, or clockwise. Within the sketch, this motor direction is
represented by a positive value (Figure 32).

Tip: To solve this extension
activity, you can find a sample
sketch in the appendix titled GS_
Activity_2_Extension_Example.

Getting Started Activities 31

Real-World Link

You can find DC motors in many places. They are in elevators, trains, machinery,
power tools, cars, and fans. They are often used to power different electronics.

Careers: small-engine mechanic, mechanical engineer, machinery maintenance
worker

STEM Connections

• Science

 Ĕ Direct current

 Ĕ Power

• Technology

 Ĕ DC motor use

 Ĕ Torque

• Engineering

 Ĕ Motor wiring

 Ĕ Ground

• Math

 Ĕ Revolutions per minute (rpm)

 Ĕ Degrees

Block-Text Correlation

Arduino Source Code

#include <PULSE.h>
PULSE pulse;

void setup() {
pulse.PulseBegin();
}

void loop() {
pulse.setMotorPower(1,50);
delay(5000);
pulse.setMotorPower(1,-50);
delay(5000);

}

void setup() {

pulse.PulseBegin();

void loop() {
pulse.setMotorPower(1,50);

delay(5000);

pulse.setMotorPower(1,-50);

delay(5000);

Note: In the parentheses, (1,50) means
Motor 1 will spin clockwise at a power of 50.

32 Getting Started Activities

Activity 3: Moving Your Servo Motors
Introduction

In the third activity, you will create a sketch to rotate a servo motor. Servo motors
allow movement to a set position regardless of the start position. The TETRIX servo
motors have a limited range of motion from 0 to 180°. For example, you can tell a
servo to go to position 45° regardless of where it starts. If it starts at 0°, it will move
clockwise to 45°. If it starts at 120°, it will move counterclockwise to 45°.

Figure 34

Open the Program

Before you open your next example sketch, be sure to save any sketch you want
to reference later. Let’s start by looking at the example sketch. Open the sketch by
selecting Examples > GS_Activity_3. A new sketch window will open titled GS_
Activity_3 (Figure 34).

Parts Needed

1x
6 V NiMH Battery

Pack 40235

1x
TETRIX® PULSE™
Controller 44268

1x
3-Foot Type A-B USB

Cable 40967

1x
Computer

1x
Standard-Scale Servo

Motor 40538 with Servo
Mounting Bracket 40232
(Assembly instructions

on pages 54-55)

Getting Started Activities 33

Background

In this third sketch, you will spin a servo motor back and forth between two
different positions at a set speed. The motor will operate at 25% speed. This
behavior will continue until the Stop/Reset button is pressed.

Servo motors allow for a lot more precision in movement than DC motors do.

Execute the Code

Before you can upload the sketch to the PULSE, remember to check your
connections. Keep in mind that you added a new connection with the motor. Plug
the end of the wire that extends from a servo motor into the Servo 1 port.

Upload the sketch. The green LED will light up, indicating that the code is ready
to execute. When this has happened, press the green Start button on the PULSE
controller.

Observe the direction and duration of the servo motor rotation. Did the motor’s
behavior match the intended program? Press the Stop/Reset button when you are
ready to stop the motor.

Further Investigate

In this sketch, you will use two new PULSE blocks: pulse Set Servo Speed and pulse
Set Servo Position. Both blocks have two parameters, but they are different.

The two parameters of the pulse Set Servo Speed block are servo channel and servo
speed.

In the example, Servo 1 will spin at 25% power while it rotates to the position
commanded by the pulse Set Servo Position block. This block is in the setup portion
of the setup-loop block because it needs to be listed once at the beginning of the
program (Figure 35).

Figure 35

Tip: What’s the difference
between a DC motor and a servo
motor? A DC motor has two wires
and can rotate continuously. A
TETRIX servo motor has three
wires and can be placed into
different positions but can’t
rotate beyond 180 degrees.

34 Getting Started Activities

The two parameters of the pulse Set Servo Position block are servo channel and
target position. In the example, pulse Set Servo Position means Servo 1 will rotate
to the target position of 180°. It then changes position to 0° but continues at the
same speed.

This servo will continue to change position because the program will continue to
execute the loop until the program is ended (Figure 36).

In the sketch, both blocks work together to tell the servo motor not only the target
position but also the speed to use while moving to the target position.

You can alter the position and speed of the servo by changing the values of both
functions. Practice changing the parameters in the sketch. Observe the effect these
changes have on the servo motor.

Extension Activity

With the example as a reference, try creating a new sketch to move your servo
motor. You could also incorporate the use of your DC motor and LEDs on the
controller. Remember what you learned from your previous activities and think of
creative ways to combine the functions you have learned.

Figure 36

Tip: To solve this extension
activity, you can find a sample
sketch in the appendix titled GS_
Activity_3_Extension_Example.

Getting Started Activities 35

Real-World Link

You can find servo motors in R/C model cars for steering and R/C model airplanes
for controlling flaps and rudders. Servos are used where precise movement is
needed such as in the operation of robotic arms, grippers, and rotating camera
mounts.

Careers: fabricator, industrial engineer, machinist

STEM Connections

• Science

 Ĕ Current

 Ĕ Fleming’s rules

• Technology

 Ĕ Motor assembly

 Ĕ Feedback system

• Engineering

 Ĕ Energy conversion

 Ĕ Motor gearing

• Math

 Ĕ Accuracy

 Ĕ Precision

Block-Text Correlation

void setup() {

pulse.PulseBegin();

pulse.setServoSpeed(1,25);

void loop() {

pulse.setServoPosition(1,180);

delay(3000);

pulse.setServoPosition(1,0);

delay(3000);

Arduino Source Code

#include <PULSE.h>
PULSE pulse;

void setup() {
pulse.PulseBegin();
pulse.setServoSpeed(1,25);
}

void loop() {
pulse.setServoPosition(1,180);
delay(3000);
pulse.setServoPosition(1,0);
delay(3000);

}

Note: The servo motor changes position
from 0 degrees to 180 degrees.

36 Getting Started Activities

Activity 4: Introduction to the Line Finder Sensor
Introduction

For the fourth activity, you will use a line-finding sensor. In this example, you will
connect a Line Finder Sensor to digital sensor port D2. You will create a sketch to
read digital input from the Line Finder Sensor.

Sensors enable us to gather information from the world around us. The type of
information depends on the type of sensor. The Line Finder Sensor uses reflected
infrared light to distinguish between light and dark surfaces.

Figure 37

Open the Program

Before you open your next example sketch, be sure to save any sketch you want
to reference later. Let’s start by looking at the example sketch. Open the sketch by
selecting Examples > GS_Activity_4. A new sketch window will open titled GS_
Activity_4 (Figure 37).

1x
Contrasting light
and dark surface

Parts Needed

1x
6 V NiMH Battery

Pack 40235

1x
TETRIX® PULSE™
Controller 44268

1x
3-Foot Type A-B USB

Cable 40967

1x
Computer

1x
Line Finder Sensor

Pack 43056

Getting Started Activities 37

Background

For the fourth sketch, you will take a closer look at programming a sensor and using
a logic block. You will use the Line Finder Sensor to determine whether a surface is
light or dark.

The if-do logic block does exactly what its name suggests. Everything contained
within the loop will repeat consecutively until the sketch is ended with a command
or the Stop/Reset button (Figure 38).

Depending on the surface, a red or yellow LED will light up on the PULSE controller.

Execute the Code

Before you can upload the sketch to the PULSE, remember to check your
connections. Keep in mind that you added a new connection in digital sensor port
D2 with the Line Finder Sensor.

Upload the sketch. The green LED will light up, indicating the code is ready to
execute. When this has happened, press the green Start button on the PULSE
controller.

Hold the sensor over a contrasting surface. As the sensor moves from light to dark,
observe the red LED on the PULSE. When the sensor is over a nonreflective or dark
surface, the yellow LED will be on. When the sensor is over a white or reflective
surface, the red LED will be on.

Press the Stop/Reset button when you are ready to stop the sensor.

Figure 38

38 Getting Started Activities

If the if portion of the loop block isn’t true, then the else if portion enables you to
test for a different condition. If this condition is met, then the blocks within the do
section under the else if section will run. In the else if portion, the output of the Line
Finder Sensor must equal 0, or LOW (Figure 40).

The Line Finder Sensor can return a value of “1” (HIGH) or “0” (LOW). A value of “1” is
returned when the Line Finder Sensor detects a dark line or a nonreflective surface;
a value of “0” is returned when the Line Finder Sensor detects a white or reflective
surface.

If the Line Finder Sensor detects a line or a nonreflective surface, then it turns
the red LED on. Think of it as an object placed in its path. The red LED on the Line
Finder Sensor also lights up. In the program, this occurs when the line variable is set
to LOW.

If the Line Finder Sensor detects a white or reflective surface, it turns the yellow LED
on. In the program, this occurs when the line variable is set to HIGH (Figure 41).

Figure 39

Figure 40

Figure 41

Further Investigate

This sketch introduces a program structure, new blocks, and a comparison
statement. The program structure is an “if” statement, the reading of the sensor, and
the comparison statement is “=” (equal to). The comparison statement “=” (equal
to) defines a type of test. In this sketch, the input of the Line Finder Sensor will turn
different LEDs on or off.

The basic “if” statement enables us to test for a certain condition. If this condition is
met, then the program can perform an action. If the variable in the if section of the
loop block is true, then the blocks within the do section are run. In this instance, the
output of the Line Finder Sensor must equal 1, or HIGH, for the do section to run
(Figure 39).

Getting Started Activities 39

Experiment with the Line Finder Sensor on different surfaces and different heights
to see how the sensor reacts.

Extension Activity

With the example as a reference, try creating a new sketch to use your Line Finder
Sensor. Remember what you learned from your previous activities and think of
additional creative actions to perform based on the condition of the Line Finder
Sensor.

Real-World Link

There are many uses for a robot that can follow a line. Automated robots are being
developed to follow lines to deliver materials within hospitals. In the future, they
could also move materials around warehouses or transport goods.

Careers: materials engineer, electromechanical technician, software developer

STEM Connections

• Science

 Ĕ Light

 Ĕ Electromagnetic spectrum

• Technology

 Ĕ Guidance system

 Ĕ Automation

• Engineering

 Ĕ Microcontroller

 Ĕ Embedded system

• Math

 Ĕ Angles

 Ĕ Lines

Block-Text Correlation

void setup() {

pulse.PulseBegin();

void loop() {

if (pulse.readLineSensor(2) == 1) {

pulse.setRedLED(LOW);

pulse.setYellowLED(HIGH);

} else if (pulse.readLineSensor(2) == 0) {

pulse.setRedLED(HIGH);

pulse.setYellowLED(LOW);

Arduino Source Code

#include <PULSE.h>
PULSE pulse;

void setup() {
pulse.PulseBegin();

}

void loop() {
if (pulse.readLineSensor(2) == 1) {
pulse.setRedLED(LOW);
pulse.setYellowLED(HIGH);
} else if (pulse.readLineSensor(2) == 0) {
pulse.setRedLED(HIGH);
pulse.setYellowLED(LOW);
}
}

Note: All the actions completed in the if () or
if/else () loops are contained within braces.

40 Getting Started Activities

Activity 5: Introduction to the Ultrasonic Sensor
Introduction

For the final getting started activity, you will finish up your exploration of sensors
by creating a sketch using the Ultrasonic Sensor. In this activity, you will connect
an Ultrasonic Sensor to digital sensor port D3 and display the distance to an object
you place in front of it using the serial monitor window.

Like all sensors, the Ultrasonic Sensor enables us to gather information. The
Ultrasonic Sensor gathers information to communicate distance. The sensor works
by sending a sonic pulse burst and then waiting on its return as it is reflected off an
object in range. The reflected sonic pulse time period is measured to determine the
distance to the object. The sensor has a measuring range of approximately 3-400
centimeters.

Figure 42

Open the Program

Before you open your next example sketch, be sure to save any sketch you want
to reference later. Let’s start by looking at the example sketch. Open the sketch by
selecting Examples > GS_Activity_5. A new sketch window will open titled GS_
Activity_5 (Figure 42).

Parts Needed

1x
6 V NiMH Battery

Pack 40235
1x

TETRIX® PULSE™
Controller 44268

1x
3-Foot Type A-B USB

Cable 40967

1x
Computer

1x
Ultrasonic Sensor

Pack 43055

Getting Started Activities 41

Background

For your fifth sketch, you will use the Ultrasonic Sensor, which sends out pulses that
measure the distance from the sensor to the object. You will use the same logic
block from the previous activity.

Instead of measuring light, this sensor will measure distance. Depending on the
distance of the object from the sensor, a red or yellow LED will light up on the
PULSE controller.

Execute the Code

Before you can upload the sketch to the PULSE, remember to check your
connections. Keep in mind that you added a new connection in digital sensor port
D3 with the Ultrasonic Sensor. Upload the sketch.

With the sensor lying flat on the desk pointed up, press the green Start button to
execute the code.

Hold your hand above the sensor. Move it up and down. Watch what happens to
the LEDs on the PULSE controller. Press the Stop/Reset button when you are ready
to stop the sensor.

42 Getting Started Activities

If the if portion of the loop block isn’t true, then the else if portion enables you to
test for a different condition. If this condition is met, then the blocks within the do
section under the else if section will run. In this instance, if there is an object closer
than 10 cm to the Ultrasonic Sensor, the red LED on the PULSE controller will be lit.

Experiment with the Ultrasonic Sensor with different objects and different heights
to see how the sensor reacts.

Extension Activity

With the example as a reference, try creating a new sketch to use your Ultrasonic
Sensor. Remember what you learned from your previous activities and experiment
with different objects in front of the Ultrasonic Sensor to see if they are detectable.
You can also program the motors to stop when an object reaches a certain distance
from the Ultrasonic Sensor.

Try changing the distance units on the pulse Ultrasonic Sensor block from
centimeters to inches. Understanding how to use the Ultrasonic Sensor will give
your robot vision so that it can steer around objects and obstacles (Figure 44).

Figure 43

Figure 44

Further Investigate

In this sketch, the input of the Ultrasonic Sensor will turn different LEDs on or off.

If the variable in the if section of the loop block is true, then the blocks within the
do section of the loop block are run. In this instance, if there isn’t an object closer
than 10 cm to the Ultrasonic Sensor, the yellow LED on the PULSE controller will be
lit (Figure 43).

Tip: To solve this extension
activity, you can find a sample
sketch in the appendix titled GS_
Activity_5_Extension_Example.

Getting Started Activities 43

Real-World Link

Modern vehicles are smart. They have backup cameras and assisted parallel
parking and will even beep at you if an object is too close to the car. This is how an
ultrasonic sensor works!

Careers: car designer, sound engineering technician, sonar technician

STEM Connections

• Science

 Ĕ Sound waves

 Ĕ Reflection of sound waves

• Technology

 Ĕ Frequency

 Ĕ Sound digitization

• Engineering

 Ĕ Sonic measurements

 Ĕ Sonar

• Math

 Ĕ Distance

 Ĕ Comparison symbols

Block-Text Correlation

void setup() {
pulse.PulseBegin();
void loop() {

if (pulse.readSonicSensorCM(3) > 10) {
pulse.setRedLED(LOW);
pulse.setYellowLED(HIGH);

} else if (pulse.readSonicSensorCM(3) < 10) {
pulse.setRedLED(HIGH);
pulse.setYellowLED(LOW);

Arduino Source Code

#include <PULSE.h>
PULSE pulse;

void setup() {
pulse.PulseBegin();

}

void loop() {
if (pulse.readSonicSensorCM(3) > 10) {
pulse.setRedLED(LOW);
pulse.setYellowLED(HIGH);
} else if (pulse.readSonicSensorCM(3) < 10) {
pulse.setRedLED(HIGH);
pulse.setYellowLED(LOW);
}
}

Note: This program uses the math values of greater than (>) and less
than (<). A specific LED will be lit depending on whether the output
value is greater than or less than 10.

44 Getting Started Activities

Building and Coding the PULSE Codee Bot
This is what you have been waiting for. It is time to move to the next level. You
have worked hard to learn the basics, and now it is time to apply them to an actual
robot. The next 10 activities will walk you through building, moving, navigating,
and adding sensors to a robot, and more, culminating in an activity that combines
everything. It’s about to get exciting!

Building and Coding the PULSE CodeeBot 45

Note: In order to complete the build shown in this book, you must have the TETRIX PRIME Programmable Set.

Programmable Robotics Set

46 Building and Coding the PULSE CodeeBot

Wheel, Gear, & Servo Hardware
Part No. Part Name Quantity
40230 TETRIX PRIME Shaft Servo Hub .6
40225 TETRIX PRIME 80 mm Steel Axle .6
40226 TETRIX PRIME 40 mm Steel Axle .6
40227 TETRIX PRIME 8 mm x 6 mm Bronze Bushing 12
40228 TETRIX PRIME Beam Attachment Hub .4
40229 TETRIX PRIME D-Shaft Set Collar .8

Gripper Assembly
Part No. Part Name Quantity
40234 TETRIX PRIME Gripper Kit .1

Electronics & Control
Part No. Part Name Quantity
44268 TETRIX PULSE Robotics Controller with USB cable1
43055 Ultrasonic Sensor Pack .1
43056 Line Finder Sensor Pack .1

Beams
Part No. Part Name Quantity
40201 TETRIX PRIME 4-Hole Square Beam .4
40202 TETRIX PRIME 5-Hole Square Beam .4
40203 TETRIX PRIME 6-Hole Square Beam .4
40204 TETRIX PRIME 7-Hole Square Beam .4
40205 TETRIX PRIME 8-Hole Square Beam .4
40206 TETRIX PRIME 13-Hole Square Beam .2
40207 TETRIX PRIME 15-Hole Square Beam .2

Internal Connectors
Part No. Part Name Quantity
40212 TETRIX PRIME 3-Way Beam Connector .4
40213 TETRIX PRIME Tee Beam Connector .4
40211 TETRIX PRIME 90-Degree Beam Connector4
40214 TETRIX PRIME Beam End Connector .4
40322 TETRIX PRIME Beam Extension Connector4
40215 TETRIX PRIME Beam Straight Connector .4

External Connectors
Part No. Part Name Quantity
40208 TETRIX PRIME 90-Degree Beam Bracket 10
40209 TETRIX PRIME 60-Degree Beam Bracket . 10
40210 TETRIX PRIME Tee Beam Bracket . 10
40216 TETRIX PRIME Straight Block Beam Connector 10
40217 TETRIX PRIME 90-Degree Cross Block Connector 10

Connecting Hardware
Part No. Part Name Quantity
40219 TETRIX PRIME Quick Rivet Connector . 24
40220 TETRIX PRIME Quick Rivet Peg . 24
40221 TETRIX PRIME Wing Nut . 24
40323 TETRIX PRIME Thumbscrew . 24
40516 Socket Head Cap Screw . 25

Wheels, Gears, & Servos
Part No. Part Name Quantity
40222 TETRIX PRIME Wheel with Tire. .4
40223 TETRIX PRIME 40-Tooth Plastic Gear .4
40224 TETRIX PRIME 80-Tooth Plastic Gear .4
40538 TETRIX Standard-Scale Servo Motor .2
44298 TETRIX PRIME DC Motor .2
40232 TETRIX PRIME Servo Mounting Bracket .6

TETRIX PRIME Programmable Robotics Set
Parts Index

Batteries & Hardware
Part No. Part Name Quantity
40236 TETRIX PRIME Battery Mount Bracket .2
40235 TETRIX PRIME 6 V NiMH Battery Pack .1
40378 TETRIX PRIME 5-Cell NiMH Battery Pack Charger1
36404 4-in-1 Screwdriver .1
40341 Miniature Ball-Point Hex Driver .1
42991 2-in-1 Screwdriver .1
41769 Plastic 2 oz Cups .4
14041 Practice Golf Balls .4
44301 TETRIX PULSE Robotics Controller Programming Guide1

Building and Coding the PULSE CodeeBot 47

Structural Elements

TETRIX PRIME Hardware Components
Beams
The beams are named by the number
of small holes on one side of the beam.
Do not select beams by counting
the larger holes (see right).

15-Hole Square Beam 40207

13-Hole Square Beam 40206

8-Hole Square Beam 40205

7-Hole Square Beam 40204

6-Hole Square Beam 40203

5-Hole Square Beam 40202

4-Hole Square Beam 40201

To identify TETRIX PRIME Square Beams, count the small holes. The
example above is a 4-hole square beam.

1:1 scale

1 2 3 4

48 Building and Coding the PULSE CodeeBot

Structural Elements

3-Way Beam Connector 40212

Tee Beam Connector 40213

Beam End Connector 40214

Beam Extension Connector 40322

Beam Straight Connector 40215

90-Degree Beam Connector 40211

Building and Coding the PULSE CodeeBot 49

Straight Block Beam Connector 40216

90-Degree Beam Bracket 40208

60-Degree Beam Bracket 40209

Tee Beam Bracket 40210

Quick Rivet Connector 40219

Thumbscrew 40323

90-Degree Cross Block Connector 40217

Beam Attachment Hub 40228

Quick Rivet Peg 40220

Wing Nut 40221

Structural Elements

Tip: These two parts, the straight block beam connector
and the 90-degree cross block connector, are very close in
appearance and can be easily confused. Please double-check
that you are using the one the directions call for.

50 Building and Coding the PULSE CodeeBot

Socket Head Cap Screw 40516

8 mm x 6 mm Bronze Bushing 40227

Motion Elements

Wheel with Tire 40222

80-Tooth Plastic Gear 40224

40-Tooth Plastic Gear 40223

Battery Mount Bracket 40236

80 mm Steel Axle 40225

40 mm Steel Axle 40226

D-Shaft Set Collar 40229

Measure 80 mm and 40 mm steel axles here.

Note: 10 mm = 1 cm

Building and Coding the PULSE CodeeBot 51

Power, Tools, and Accessories Elements

Motion Elements

Standard-Scale Servo Motor 40538

DC Motor 44298

Shaft Servo Hub 40230

Servo Mounting Bracket 40232

Gripper Kit 40234

4-in-1 Screwdriver 36404

Plastic 2 oz Cups 41769

Practice Golf Balls 14041

Miniature Ball-Point Hex Driver 40341

2-in-1 Screwdriver 42991

52 Building and Coding the PULSE CodeeBot

Power, Tools, and Accessories Elements

6 V NiMH Battery Pack 40235

5-Cell NiMH Battery Pack Charger 40378

Control Elements

TETRIX PULSE Robotics Controller 44268

Ultrasonic Sensor Pack 43055

Line Finder Sensor Pack 43056

3-Foot Type A-B USB Cable 40967

Building and Coding the PULSE CodeeBot 53

Standard Servo Assembly
You will need the standard-scale servo motor with screw, the servo mounting bracket with screws, a shaft servo hub, and a
socket head cap screw. You will also need the 4-in-1 screwdriver and the miniature ball-point hex driver. remove the white
plastic servo horn attached to the servo. Retain the screw for future use, but discard the white plastic servo horn. Attach the
Standard Servo label to the servo. Assemble one of the standard servos as indicated in the illustrations. The other standard
servo will be used for the gripper assembly.

Standard servo motors are used for proportional rotation and for grippers, steering, and positioning.

Servo Mounting Bracket

Standard-Scale
Servo Motor

Self-Tapping Screw

Self-Tapping Screw

Shaft Servo Hub

Servo Horn Screw

Socket Head Cap Screw

1x
Standard-Scale

Servo Motor 40538

1x
Servo Mounting
Bracket 40232

1x
Shaft Servo Hub

40230

1x
Socket Head Cap

Screw 40516

Parts Needed

Tip: Keep in mind that the continuous rotation servo mounts in the servo mounting bracket
the same way as the standard servo, but there is no need to center the servo horn.

54 Building and Coding the PULSE CodeeBot

Step 1

Step 3

Step 5

Step 2

Step 4

Finished
Assembly

Before attaching the servo hub, you
must make sure the servo is in the
neutral position. To do this, connect
both the servo and the battery to
the receiver and turn on the power
to the remote transmitter. Make sure
both joysticks and trimmers are in the
center, or neutral, position. The servo
motor will move to its neutral position.

Line up the splines on the hub with the
splines on the servo and press the two parts
together. The set screw should line up as
close as possible with the center of the servo
case. Tighten the screw holding the hub in
place.

Using the remote transmitter, verify the
operation of the servo. If the servo operates
properly, disconnect the battery from the
receiver and the servo. Your servos are ready
for use.

Building and Coding the PULSE CodeeBot 55

Set Screw Applications

Shaft Servo Hub 40230

Wheel with Tire 40222

80-Tooth Plastic Gear 40224

40-Tooth Plastic Gear 40223

D-Shaft Set Collar 40229

Beam Attachment Hub 40228

Tip: Please keep in mind that if your parts already
have socket head cap screws installed and the
directions call for that operation, you can skip to the
next step.

Tip: Directions will show these types of parts in
proper position. After the parts are in place, don’t
forget to tighten the socket head cap screws before
moving on to the next step.

Tip: Socket head cap screws should be snug but
not overtightened. Overtightening socket head cap
screws can damage components.

56 Building and Coding the PULSE CodeeBot

Gripper Assembly
The gripper kit is included with the TETRIX PRIME Programmable Robotics Set
but is shown here for reference.

Step 1 Step 2

Gripper Pivot Arm

Gripper Pivot Arm

Right Gripper
Gear Arm

Left Gripper
Gear Arm

Gripper Plate

Gripper Pincer
Standard Servo

12x
Pivot Washer

11x
Self-Tapping

Screw

Important: Before attaching the right gripper gear arm to the standard servo, attach the standard servo to
the gripper plate. Then, connect the standard servo to the wireless joystick gamepad system and position
the servo motor to the neutral position (center joystick) for proper gear position alignment as shown in the
following steps. Instructions on assembly of TETRIX PRIME parts can also be found at Pitsco.com/TETRIX.

Building and Coding the PULSE CodeeBot 57

Step 5 Step 6

Step 7 Step 8

Step 3 Step 4

Servo Horn
Screw

58 Building and Coding the PULSE CodeeBot

Step 9 Step 10

Step 12

Step 14

Step 11

Step 13

Building and Coding the PULSE CodeeBot 59

Step 18Step 17

Finished Assembly

Step 16Step 15

60 Building and Coding the PULSE CodeeBot

Construction Tips
Connectors fit inside beams and come in 3-way, tee, 90-degree, end, extension, and straight beam block connector designs.

Building and Coding the PULSE CodeeBot 61

Quick rivet connectors and pegs are a quick option for securing connectors. Press the rivet in place on the beam and use
the peg to spread the rivet to secure the connection. Using rivets on two sides of the connection will make it more stable.

62 Building and Coding the PULSE CodeeBot

Joints can be made more permanent by using a thumbscrew and wing nut to secure the beams and connectors.

Tip: Wing nuts are placed in position first and
thumbscrews are tightened into them. After wing nuts
are placed and seated properly, they cannot be turned.

Tip: Thumbscrews should be snug but
not overtightened. Overtightening
thumbscrews can damage components.

Building and Coding the PULSE CodeeBot 63

Brackets can also be used to connect beams. Brackets are available for a tee connection, 60-degree connection, or
90-degree connection. Brackets should be used in pairs, with two brackets on opposite sides of a beam. Brackets are
secured using quick rivets and pegs or thumbscrews and wing nuts.

64 Building and Coding the PULSE CodeeBot

Beam end connectors, straight block beam connectors, and 90-degree cross block connectors are secured using a
thumbscrew through the beam and into the connector.

Building and Coding the PULSE CodeeBot 65

After the thumbscrew is used to secure the end of the connector, a quick rivet and peg or a thumbscrew and wing nut are
used to secure the intersecting beam.

66 Building and Coding the PULSE CodeeBot

Anytime an axle is used, it should be supported at two points. Place a bronze bushing on opposite sides of a beam and
place the axle through the bushings. Secure the axle to a D-shaft set collar, wheel, gear, or hub.

Building and Coding the PULSE CodeeBot 67

The screws in this pack will self-thread into the plastic mounts. The
4-in-1 screwdriver that comes as part of the TETRIX robotics sets can
be used to install the screws. Take care not to overtighten the screws
upon installation or the plastic mount might be damaged.

Line Finder Sensor Pack Assembly

The screws in this pack will self-thread into the plastic mounts. The
4-in-1 screwdriver that comes as part of the TETRIX robotics sets can be
used to install the screws. Take care not to overtighten the screws upon
installation or the plastic mount might be damaged.

Ultrasonic Sensor Pack Assembly

68 Building and Coding the PULSE CodeeBot

Activity 6: Build the PULSE Codee Bot
Introduction

You need a robot. Because the focus of this guide is on working with PULSE and
the TETRIX Ardublockly software, you do not need a complicated robot. With that in
mind, you will create the PULSE Codee Bot. The Codee Bot is meant to be simple,
easy to build, and exactly what you need for the purposes of this guide without any
unnecessary parts.

That being said, everything you learn with this basic bot can be transferred to a
more complicated bot as you continue on your robotics journey. The Codee Bot
uses two DC motors and PRIME wheels mounted on either side to make a perfect
test vehicle for your work with PULSE.

You will start with a basic drive frame and add more to it in later activities. You
can complete this build even if you have little to no experience with metal-based
building systems.

Building Time Expectations

30 minutes

Real-World Link

In manufacturing and assembly, it’s important to be able to follow instructions
exactly. Try making a piece of furniture without following the instructions and it will
likely have to be redone. Being able to follow a detailed procedure of steps is an
important skill that is used in a multitude of real-life applications.

Careers: machine operator, roboticist, engineer

STEM Connections

• Science

 Ĕ Wheel and axle

 Ĕ Screw

• Technology

 Ĕ Materials

 Ĕ Fasteners

• Engineering

 Ĕ Machine design

 Ĕ Construction

• Math

 Ĕ Length

 Ĕ Diameter

Teacher Note: Other factors can
affect building time, including
matters such as set organization
and whether the builder has a
partner. The building time is only
an estimate. Actual time might
vary.

Building and Coding the PULSE CodeeBot 69

Step 1

Partial assembly should look like this.

Parts Needed

2x
6-Hole Square Beam 40203

2x
13-Hole Square Beam 40206

5x
90-Degree Cross Block Connector 40217

2x
40 mm Steel Axle 40226

4x
8 mm x 6 mm Bronze Bushing 40227

11x
Thumbscrew 40323

2x
DC Motor 44298 with

Servo Mounting Bracket
40232 (Assembly

instructions on pages
54-55)

Tip: See page 48 for help with identifying beam elements. To identify TETRIX PRIME square beams, count the small holes.

70 Building and Coding the PULSE CodeeBot

Step 1.0

Step 1.1

Build two like this.

Building and Coding the PULSE CodeeBot 71

Step 1.2

Step 1.3

72 Building and Coding the PULSE CodeeBot

Step 1.4

Building and Coding the PULSE CodeeBot 73

1x
15-Hole Square

Beam 40207

Step 2
Parts Needed

1x
4-Hole Square Beam 40201

1x
5-Hole Square Beam 40202

1x
Tee Beam Bracket 40210

1x
Beam End Connector 40214

2x
Straight Block Beam Connector

40216

2x
90-Degree Cross Block Connector

40217

1x
Wing Nut 40221

2x
40 mm Steel Axle 40226

2x
8 mm x 6 mm Bronze Bushing

40227

1x
D-Shaft Set Collar 40229

2x
Beam Attachment Hub 40228

2x
Battery Mount Bracket 40236

10x
Thumbscrew 40323

1x
Standard-Scale Servo Motor 40538

with Servo Mounting Bracket
40232 (Assembly instructions on

pages 54-55)

74 Building and Coding the PULSE CodeeBot

Partial assembly should look like this.

Step 2.0

Step 2.1

Building and Coding the PULSE CodeeBot 75

Step 2.2

Step 2.3

76 Building and Coding the PULSE CodeeBot

Step 2.4

Step 2.5

Building and Coding the PULSE CodeeBot 77

Step 2.6

Step 2.7

78 Building and Coding the PULSE CodeeBot

Step 2.8

Building and Coding the PULSE CodeeBot 79

Step 3
Parts Needed

2x
Wheel with Tire 40222

1x
TETRIX® PULSE™ Controller 44268

3x
Thumbscrew 40323

Partial assembly should look like this.

80 Building and Coding the PULSE CodeeBot

Step 3.0

Step 3.1

Building and Coding the PULSE CodeeBot 81

Step 3.2

82 Building and Coding the PULSE CodeeBot

Step 3.3

Building and Coding the PULSE CodeeBot 83

Step 4

Partial assembly should look like this.

Parts Needed

2x
Socket Head Cap Screw 40516

1x
6 V NiMH Battery Pack 40235

1x
Line Finder Sensor Pack 43056

1x
Ultrasonic Sensor Pack 43055

84 Building and Coding the PULSE CodeeBot

Step 4.0

Step 4.1

Building and Coding the PULSE CodeeBot 85

Step 4.2

86 Building and Coding the PULSE CodeeBot

Finished assembly should look like this.

Building and Coding the PULSE CodeeBot 87

Activity 7: Drive Forward
Introduction

This is your first coding activity with the PULSE Codee Bot, so you’ll keep it simple.
In this activity, you will create a sketch to move the Codee Bot forward for three
seconds and stop, and the program will end.

Building on what you learned in Activity 2, you will add a second DC motor and
have the two motors work together in unison. Being able to use two motors
together in unison is a fundamental requirement for mobile robots.

Figure 45

Open the Program

Let’s start by looking at the example sketch. Open the sketch by selecting
Examples > Activity_7. A new sketch window will open titled Activity_7
(Figure 45).

Parts Needed

Teacher Note: Other factors can
affect building time, including
matters such as set organization
and whether the builder has a
partner. The building time is only
an estimate. Actual time might
vary.

88 Building and Coding the PULSE CodeeBot

Execute the Code

Before you can upload the sketch to the PULSE, remember to check your
connections. Upload the sketch. The green LED will light up, indicating the code is
ready to execute. When the LED comes on, disconnect the USB cable and set the
Codee Bot on the floor.

Place the Codee Bot so the wheels are at the front of the bot. If your robot goes
backward instead of forward, switch the DC motors’ cords in the ports on the
controller.

Press the green Start button to execute the sketch. Observe the direction and
duration of the Codee Bot’s motion. Based on the sketch comments, did the
behavior match expectations? The Codee Bot should stop moving after three
seconds.

Further Investigate

This sketch introduces three new blocks: pulse Invert Motor, pulse Set Motor
Powers, and pulse End. The pulse Invert Motor block (Figure 46) enables you to
invert the rotational direction of a motor.

When two motors are mounted on opposite sides, this block enables you to give
a single direction command to both motors and have them work together. This
makes your job as a programmer easier. There are two parameters to the function.
The first parameter designates the motor channel, and the second parameter
designates no invert or invert (0 or 1).

The pulse Set Motor Powers block (Figure 47) enables you to set the power level of
Motor 1 and Motor 2 at the same time. The two parameters set the speed for each
motor. In this sketch, the motor power for each motor is set at 50 percent.

The pulse End block ends or terminates the sketch. If this block weren’t present,
your program would continue to execute the loop until you stopped the program
by pressing the red button on the controller.

Figure 46

Figure 47

Tip: Without the use of encoders,
speeds of DC motors using the
power commands can vary
depending on the charge level of
the battery.

Building and Coding the PULSE CodeeBot 89

Figure 48

Extension Activity

With the example as a reference, try creating a new sketch to move the Codee Bot
forward and stop. Remember what you have learned from your previous activities
and experiment with trying to make the Codee Bot move forward for an amount of
time and then reverse to the same spot.

You have the fundamentals to explore speed because you can measure distance
over time. In your sketch, when you use a specified time, you can physically
measure how far the robot moves. When you change your power parameter, it
should affect the distance traveled in the same time frame.

With that in mind, create a challenge by marking a specified distance on the floor.
Using the data you have collected, program the Codee Bot to get as close to the
specified distance as possible without going over.

In this simple sketch, all these blocks work together so the robot can move forward
for three seconds and then stop. Because you want the motors to always work
together, the pulse Invert Motor block needs to be used only in the setup part of
the loop block. The pulse Set Motor Powers block tells both motors to move at 50%
power with a single block. To finish the sketch, you use pulse End instead of having
it loop (Figure 48).

90 Building and Coding the PULSE CodeeBot

Block-Text Correlation

void setup() {

pulse.PulseBegin();

pulse.setMotorInvert(1,1);

void loop() {
pulse.setMotorPowers(50,50);

delay(3000);

pulse.PulseEnd();

Arduino Source Code

#include <PULSE.h>
PULSE pulse;

void setup() {
pulse.PulseBegin();

pulse.setMotorInvert(1,1);
}

void loop() {
pulse.setMotorPowers(50,50);
delay(3000);
pulse.PulseEnd();
}

Real-World Link

Trains are machines that can go only forward or backward with the motors they
use. The motors are powered by thrust in either a forward or backward direction. A
train could never directly turn around a corner. That’s why all train tracks are curved
instead of having 90-degree turns.

Careers: railroad worker, railroad conductor, locomotive engineer

STEM Connections

• Science

 Ĕ Kinetic energy

 Ĕ Speed

• Technology

 Ĕ Direct drive

 Ĕ DC motors

• Engineering

 Ĕ Steering mechanism

 Ĕ Programming

• Math

 Ĕ Rotation

 Ĕ Wheel circumference

Note: Use the pulse Invert Motor block to program the two
motors to go in opposite directions.

Building and Coding the PULSE CodeeBot 91

Activity 8: Drive in a Circle
Introduction

For your eighth activity, you will apply your knowledge of motors to create a new
behavior. While being able to move straight is important, you need to be able
to expand on that and make turns. This activity will have your PULSE Codee Bot
driving in circles by using different motor powers as the motors work in unison.

Open the Program

Let’s start by looking at the example sketch. Open the sketch by selecting
Examples > Activity_8. A new sketch window will open titled Activity_8
(Figure 49).

Figure 49

Parts Needed

92 Building and Coding the PULSE CodeeBot

Execute the Code

Before you can upload the sketch to the PULSE, remember to check your
connections. Upload the sketch. The green LED will light up, indicating the code
is ready to execute. When this has occurred, disconnect the USB cable and set the
Codee Bot on the floor.

Place the Codee Bot so the wheels are at the front of the bot. If your robot goes
backward instead of forward, switch the DC motors’ cords in the ports on the
controller.

Press the green Start button to execute the sketch. Observe the direction and
duration of the Codee Bot’s motion. Press the red Stop/Reset button to end the
sketch. Based on the sketch comments, did the behavior match expectations?

Further Investigate

While this sketch does not use any new blocks, it should lead to a deeper
understanding of how motors work in unison to create a specified behavior.

All the blocks in this sketch work together to make the Codee Bot move in a circle.
Because you want the motors to always work together, the pulse Invert Motor block
is used only in the setup part of the loop. The pulse Set Motor Powers block tells
both motors to move at different speeds in a single function. One motor is set to
100% while the other is set to 50%, resulting in a circular motion.

Extension Activity

With the example as a reference, try creating a new sketch to move the Codee Bot
in a different-size circle. Remember what you have learned from your previous
activities and experiment with different parameters to make the circle diameter
larger or smaller. Challenge yourself to add behaviors. What would it take to make
your robot drive in an oval or a figure eight?

Real-World Link

If you’ve ridden by a golf course, you have probably seen automatic sprinklers
operating. These sprinklers go in a circle spraying water in a 360-degree radius.
These sprinklers are programmed to turn off and on at different times. It’s important
that the motor turn the sprinkler head so it covers the entire area of its range.

Careers: groundskeeper, farm equipment mechanic, irrigation engineer

STEM Connections

• Science

 Ĕ Power

 Ĕ Speed

• Technology

 Ĕ Motor control

 Ĕ Motor precision

• Engineering

 Ĕ Machine design

 Ĕ Geometric patterns

• Math

 Ĕ Radius

 Ĕ Diameter

Tip: The Codee Bot might struggle
to overcome the friction of carpet.
If possible, test your bot on a
smooth surface.

Tip: You will need about six feet,
or two meters, of open space on
the floor for the robot to complete
a circle.

Building and Coding the PULSE CodeeBot 93

Block-Text Correlation

void setup() {

pulse.PulseBegin();

pulse.setMotorInvert(1,1);

void loop() {
pulse.setMotorPowers(100,50);

Arduino Source Code

#include <PULSE.h>
PULSE pulse;

void setup() {
pulse.PulseBegin();

pulse.setMotorInvert(1,1);
}

void loop() {
pulse.setMotorPowers(100,50);
}

Note: Motor 1 is turning at twice the power of Motor 2.

94 Building and Coding the PULSE CodeeBot

Activity 9: Drive in a Square
Introduction

Now, you will continue to build your navigational skills with the PULSE Codee
Bot by giving your robot the ability to make 90-degree turns. The ability to make
90-degree turns will be used to make the Codee Bot drive in a square.

Open the Program

Let’s start by looking at the example sketch. Open the sketch by selecting
Examples > Activity_9. A new sketch window will open titled Activity_9
(Figure 50).

Figure 50

Parts Needed

Building and Coding the PULSE CodeeBot 95

Execute the Code

Before you can upload the sketch to the PULSE, remember to check your
connections. Upload the sketch. The green LED will light up, indicating the code
is ready to execute. When this has occurred, disconnect the USB cable and set the
Codee Bot on the floor.

Press the green Start button to execute the sketch. Observe the direction and
duration of the Codee Bot’s motion. Based on the sketch comments, did the
behavior match expectations?

Further Investigate

When you have a lot of blocks on screen, it can hard to see your whole program.
You can use the zoom in and out feature. Also, some blocks can be changed to
inline inputs. The pulse Set Motor Powers block can be changed to an inline input.
Below is an example of how this block can change appearance (Figure 51). This
does not affect your program.

This sketch has a lot to it, but it is made of functions that you have used before. You
have just combined multiple sequential behaviors to create one larger behavior – in
this case, a square.

An important thing to understand about this program is that you are using dead
reckoning to program the robot’s square driving path. Dead reckoning is simply
using time as the basis for controlling a motor. For instance, to make a right-hand
turn, you are commanding the motors to turn on in opposite directions at 50%
power and run for 1,650 milliseconds.

You estimate that if you spin the motors at a certain rpm for a certain time, you
should come close to making a 90-degree right turn. However, this is not always
accurate because the amount that your robot’s battery is charged can vary, and any
wheel slippage on the surface you are working on can cause a variation in results.
You are using dead reckoning to make a right turn.

All the functions in this sketch work together to make the Codee Bot move in a
square (Figure 52). Because you want the motors to always work together, the pulse
Invert Motor block needs to be used only in the setup part of the loop. The pulse
Set Motor Powers block tells both motors to move at different speeds in a single
function.

Figure 51

Tip: Depending on the surface
type, your bot might not execute a
perfect square.

96 Building and Coding the PULSE CodeeBot

Program Breakdown

Drive forward

Brake

Turn 1

Brake

Drive forward

Brake

Turn 2

Brake

Drive forward

Brake

Turn 3

Brake

Drive forward

Brake

Figure 52

Tip: Adjust the timing of the turns
if the robot doesn’t turn at right
angles. For example, you can
change the time from 1650 to
1300. The charge of the battery
can affect the turns.

Building and Coding the PULSE CodeeBot 97

Extension Activity

With the example as a reference, try creating a new sketch to move the Codee
Bot in a square. Remember what you have learned from your previous activities
and experiment with different parameters to make the square larger or smaller.
Challenge yourself to create complex paths beyond a square. Try tracing out some
of the alphabet or navigate through a simple maze using dead reckoning.

Real-World Link

Some transportation vehicles take the same route time after time. If a vehicle is in
a warehouse, it could transport items to three different locations before returning.
Then it could pick up more items and move in a square to transport them.

Careers: mapping technician, air traffic controller, manufacturing engineer

STEM Connections

• Science

 Ĕ Distance

 Ĕ Time

• Technology

 Ĕ Microprocessor time

 Ĕ Turning radius

• Engineering

 Ĕ Motor power

 Ĕ Braking

• Math

 Ĕ Angles of a square

 Ĕ Measurement of angles

98 Building and Coding the PULSE CodeeBot

Block-Text Correlation

void setup() {
pulse.PulseBegin();
pulse.setMotorInvert(1,1);
void loop() {

pulse.setMotorPowers(50,50);

delay(3000);

pulse.setMotorPowers(0,0);
delay(1000);

pulse.setMotorPowers(50,-50);
delay(1650);

Arduino Source Code

#include <PULSE.h>
PULSE pulse;

void setup() {
pulse.PulseBegin();

pulse.setMotorInvert(1,1);
}

void loop() {
pulse.setMotorPowers(50,50);
delay(3000);
pulse.setMotorPowers(0,0);
delay(1000);
pulse.setMotorPowers(50,-50);
delay(1650);
pulse.setMotorPowers(0,0);
delay(1000);
pulse.setMotorPowers(50,50);
delay(3000);
pulse.setMotorPowers(0,0);
delay(1000);
pulse.setMotorPowers(50,-50);
delay(1650);
pulse.setMotorPowers(0,0);
delay(1000);
pulse.setMotorPowers(50,50);
delay(3000);
pulse.setMotorPowers(0,0);
delay(1000);
pulse.setMotorPowers(50,-50);
delay(1650);
pulse.setMotorPowers(0,0);
delay(1000);
pulse.setMotorPowers(50,50);
delay(3000);
pulse.setMotorPowers(0,0);
delay(1000);
pulse.PulseEnd();
}

Note: The motors drive
forward for 3 seconds.

Note: The motors brake
for 1 second.

Note: The motors turn
opposite directions for
1.65 seconds, causing the
bot to turn.

Building and Coding the PULSE CodeeBot 99

Activity 10: Simplify the Square
Introduction

Remember the square activity you did in Activity 9? For your next activity, you will
use a more efficient way to code the same behavior.

Open the Program

Let’s start by looking at the example sketch. Open the sketch by selecting
Examples > Activity_10. A new sketch window will open titled Activity_10
(Figure 53).

Figure 53

Parts Needed

100 Building and Coding the PULSE CodeeBot

Execute the Code

Before you can upload the sketch to the PULSE, remember to check your
connections. Upload the sketch. The green LED will light up, indicating the code
is ready to execute. When this has occurred, disconnect the USB cable and set the
Codee Bot on the floor.

Press the green Start button to execute the sketch. Observe the direction and
duration of the Codee Bot’s motion. Based on the sketch comments, did the
behavior match expectations?

Further Investigate

This sketch implements one new program structure in the form of the repeat-do
block. The repeat-do block allows for the statements within the block to repeat for a
specific number of times. This makes a simpler, easier-to-read sketch.

The repeat-do block is used to repeat a block of code contained within it. An
increment counter is used to count the number of times the code is executed
before the loop is terminated. The repeat-do block is useful for limiting the number
of times a loop will execute (Figure 54).

When you made the Codee Bot drive in a square in Activity 9, you listed each action
line by line, resulting in excessive code that looked more complicated than it was.

You start the loop with the repeat-do block to define how many times you want the
loop to repeat. The loop will repeat four times in the program. Within the loop, the
robot is programmed to drive forward and turn (Figure 55). This is named the called
function because it occurs outside the setup-loop block.

Figure 54

Figure 55

Tip: Depending on the surface
type, your bot might not execute a
perfect square.

Building and Coding the PULSE CodeeBot 101

Extension Activity

With the example as a reference, try creating a new sketch to move the Codee Bot
in a square using the repeat-do block and called functions. Or for an additional
challenge, create complex paths beyond a square such as rectangles or hexagons.

Remember what you have learned from your previous activities. The challenge is to
move forward with your own unique robot builds and apply the coding knowledge
you have learned in new and exciting ways.

Real-World Link

Robots are used to place items into packages in manufacturing. They have to repeat
this process over and over again. The robots use sensors to sense when a package is
underneath them to place an item.

Careers: PLC (programmable logic controller) programmer, CNC programmer,
manufacturing technician

STEM Connections

• Science

 Ĕ Distance

 Ĕ Velocity

• Technology

 Ĕ Microprocessors

 Ĕ Turning radius

• Engineering

 Ĕ Path-following design

 Ĕ Programming

• Math

 Ĕ Angle measurements

 Ĕ Angles of a square

102 Building and Coding the PULSE CodeeBot

Block-Text Correlation

void setup() {

pulse.PulseBegin();

pulse.setMotorInvert(1,1);

void loop() {

pulse.setMotorPowers(50,50);

delay(3000);

pulse.setMotorPowers(0,0);

pulse.setMotorPowers(50,-50);

delay(1650);

for (int count = 0; count < 4; count++) {

} Arduino Source Code

#include <PULSE.h>
PULSE pulse;

void setup() {
pulse.PulseBegin();

pulse.setMotorInvert(1,1);
}
void loop() {
for (int count = 0; count < 4; count++) {
pulse.setMotorPowers(50,50);
delay(3000);
pulse.setMotorPowers(0,0);
delay(1000);
pulse.setMotorPowers(50,-50);
delay(1650);
pulse.setMotorPowers(0,0);
delay(1000);
}
pulse.PulseEnd();
}

Note: This is the
initialization that
happens first and
only once.

Note: This is the
condition that is
tested in each loop.

Note: The increment
is executed, and
then the condition is
tested again.

Building and Coding the PULSE CodeeBot 103

Activity 11: Drive to a Line and Stop
Introduction

You will begin this activity by adding the Line Finder Sensor to a basic move
forward behavior. This will enable the PULSE Codee Bot to stop based on the
environment around it. In this activity, the Codee Bot will drive forward and stop at
a line.

Open the Program

Let’s start by looking at the example sketch. Open the sketch by selecting
Examples > Activity_11. A new sketch window will open titled Activity_11 (Figure
56).

Figure 56

Parts Needed

Black line minimum of 2 inches wide

104 Building and Coding the PULSE CodeeBot

Execute the Code

Before you can upload the sketch to the PULSE, remember to check your
connections. The Line Finder Sensor should be in D2. Upload the sketch. The green
LED will light up, indicating the code is ready to execute. When this has occurred,
disconnect the USB cable and set the Codee Bot on the floor.

The Codee Bot should be on a white or reflective surface pointed toward a black
line or nonreflective surface approximately 36 inches or one meter away. To run this
code, you will need to place a black stripe on a white or reflective surface for the
robot to follow. White glossy cardboard, foam board, poster board, or several sheets
of paper tiled together can work for the surface.

Press the green Start button to execute the sketch. Observe the behavior of the
robot. Press the red Stop/Reset button to end the sketch. Based on the sketch
comments, did the behavior match expectations?

Further Investigate

This sketch uses two if-do blocks, a program structure you used in Activity 4, and it
introduces a while() loop block, which is a new program structure.

In this sketch, if-do blocks are looking at the condition of the Line Finder Sensor.
The first if-do block tells the Codee Bot to move at 35% power when it’s over a
white or reflective surface. The Line Finder Sensor will read 0 over these surfaces
(Figure 57).

The second if-do block contains two parts. The first part tells the Codee Bot to brake
when it’s over a black line or nonreflective surface. The Line Finder Sensor reads a
value of 1. The motor power is set to 0 and brakes (Figure 58).

Figure 57

Figure 58

Tip: Depending on the surface
type, your bot might not execute a
perfect square.

Troubleshooting: Be sure to
check that the Line Finder Sensor
is plugged into the correct
sensor port and that it is adjusted
properly to sense the line. Some
height adjustment might be
needed, or the small adjustment
screw on the back side of the
sensor module might need to be
tweaked. To see if the sensor is
working properly, manually move
the robot back and forth over the
black-and-white surface. The red
LED on the Line Finder Sensor
should be on when the sensor
is over the white surface and off
when it is over the black line.

Building and Coding the PULSE CodeeBot 105

Figure 59

The second part of the if-do block executes the while() loop block. A while()
loop looks at a test condition in the block and will loop continually until the test
condition set in the block becomes false. In this program, it will repeat what’s in
the while() loop as long as the Line Finder Sensor reads a value of 1 (Figure 59). The
program will continue blinking the red LED until the sketch is reset.

Extension Activity

With the example as a reference, try creating a new sketch to have the Codee Bot
drive to a black line and stop. Remember what you have learned from your previous
activities. Challenge yourself to create different behaviors for when the Codee Bot
meets a line, such as backing up or turning a different direction.

Real-World Link

With the advent of self-driving cars, cars need to be able to sense lines in the road. If
the car pulls up to an intersection, it needs to stop at the line. It can do this using a
sensor that detects the line.

Careers: automotive software engineer, electrical engineer, digital sculptor

STEM Connections

• Science

 Ĕ Velocity

 Ĕ Acceleration

• Technology

 Ĕ Sensors

 Ĕ while() loops

• Engineering

 Ĕ Problem solving

 Ĕ Line following

• Math

 Ĕ Logic statements

 Ĕ Speed calculations

106 Building and Coding the PULSE CodeeBot

Block-Text Correlation

void setup() {
pulse.PulseBegin();
pulse.setMotorInvert(1,1);

if (pulse.readLineSensor(2) == 0) {

pulse.setMotorPowers(35,35);

if (pulse.readLineSensor(2) == 1) {

pulse.setMotorPowers(0,0);

while (pulse.readLineSensor(2) == 1) {

pulse.setRedLED(HIGH);
delay(500);
pulse.setRedLED(LOW);
delay(500);

Arduino Source Code

#include <PULSE.h>
PULSE pulse;

void setup() {
pulse.PulseBegin();

pulse.setMotorInvert(1,1);
}
void loop() {
if (pulse.readLineSensor(2) == 0) {
pulse.setMotorPowers(35,35);
}
if (pulse.readLineSensor(2) == 1) {
pulse.setMotorPowers(0,0);
while (pulse.readLineSensor(2) == 1) {
pulse.setRedLED(HIGH);
delay(500);
pulse.setRedLED(LOW);
delay(500);
}
}
}

Note: This if() loop
runs the motors if
the reading is 0.

Note: This if() loop
stops the motors if
the reading is 1.

Note: This while()
loop blinks the LED
off and on while the
reading is 1.

Building and Coding the PULSE CodeeBot 107

Activity 12: Follow a Line
Introduction

For this activity, you can take what you learned in the previous activity and apply
it in a slightly different way to create a new behavior. This will enable the PULSE
Codee Bot to follow a line.

Open the Program

Let’s start by looking at the example sketch. Open the sketch by selecting
Examples > Activity_12. A new sketch window will open titled Activity_12
(Figure 60).

Figure 60

Parts Needed

Black line minimum of 2 inches wide

108 Building and Coding the PULSE CodeeBot

Execute the Code

Before you can upload the sketch to the PULSE, remember to check your
connections. The Line Finder Sensor should be in D2. Upload the sketch. The green
LED will light up, indicating the code is ready to execute. When this has occurred,
disconnect the USB cable and set the Codee Bot on the white or reflective surface.

To run this code, you will need to place a black stripe on a white or reflective surface
for the robot to follow. White glossy cardboard, foam board, poster board, or several
sheets of paper tiled together can work for the surface.

The black stripe can be made using electrical tape. You can make a curvy path or
just a straight line. There will be a limitation on how sharp a curve your robot will be
able to follow, so do not make the curves too tight.

The Codee Bot should be placed with the Line Finder Sensor slightly to the side
of a line to follow. Press the green Start button to execute the sketch. Observe the
behavior of the robot. Press the red Stop/Reset button to end the sketch. Based on
the sketch comments, did the behavior match expectations?

S-curveCurveStraight

Line length of 1
meter or roughly
36 inches

Sensor Sensor Sensor

Troubleshooting: Be sure to
check that the Line Finder Sensor
is plugged into the correct
sensor port and that it is adjusted
properly to sense the line. Some
height adjustment might be
needed, or the small adjustment
screw on the back side of the
sensor module might need to be
tweaked. To see if the sensor is
working properly, manually move
the robot back and forth over the
black-and-white surface. The red
LED on the Line Finder Sensor
should be on when the sensor
is over the white surface and off
when it is over the black line.

Tip: You might need to nudge
the bot to get it to move because
the wheels might slip on smooth
surfaces.

Building and Coding the PULSE CodeeBot 109

Further Investigate

This sketch uses two if-do blocks. Two actions will be executed within each if-do
block.

The first action of the if-do block deals with the motors. The if-do block tells the
Codee Bot to turn by sending power to one motor and braking the other based on
the condition of the Line Finder Sensor. Each if-do block is the opposite of the other.
This creates a series of turns that the Codee Bot uses to follow the line.

The second action of the if-do block deals with the red LED on the PULSE. The if-do
block tells the red LED to turn on or off based on the condition of the Line Finder
Sensor. This on-and-off action is synced with the turning action of the motors.

The actions in each if-do block work together to make the Codee Bot follow the line
while producing visual cues in the form of the blinking red LED.

Extension Activity

With the example as a reference, try creating a new sketch to have the Codee
Bot follow a black line. Remember what you have learned from your previous
activities. Challenge yourself to make the Codee Bot go faster and still follow the
line accurately or change the code to make the Codee Bot follow the line in the
opposite direction.

Real-World Link

The next generation of children’s rides are utilizing line-following sensors to operate
the rides. Little electric cars can drive toddlers along a path. A tiny train can follow a
figure eight path on the ground.

Careers: theme park manager, technical director, electrical ride control technician

STEM Connections

• Science

 Ĕ Light reflection

 Ĕ Angle of incidence

• Technology

 Ĕ Thresholds

 Ĕ Analog and digital

• Engineering

 Ĕ Edging machines

 Ĕ Self-driving vehicles

• Math

 Ĕ Logic statements

 Ĕ Numeric values

110 Building and Coding the PULSE CodeeBot

Block-Text Correlation

void setup() {

pulse.PulseBegin();

pulse.setMotorInvert(1,1);

if (pulse.readLineSensor(2) == 1) {

pulse.setMotorPowers(0,50);

if (pulse.readLineSensor(2) == 0) {

pulse.setMotorPowers(50,0);

Arduino Source Code

#include <PULSE.h>
PULSE pulse;

void setup() {
pulse.PulseBegin();

pulse.setMotorInvert(1,1);
}

void loop() {
if (pulse.readLineSensor(2) == 1) {
pulse.setMotorPowers(0,50);
pulse.setRedLED(LOW);
}
if (pulse.readLineSensor(2) == 0) {
pulse.setMotorPowers(50,0);
pulse.setRedLED(HIGH);
}

}

Note: One wheel will turn and the other wheel will brake,
depending on the readings from the Line Finder Sensor.

Building and Coding the PULSE CodeeBot 111

Activity 13: Drive Toward a Wall and Stop
Introduction

With this activity, you will continue to build on what you have learned and apply
it to the Ultrasonic Sensor. This will enable the PULSE Codee Bot to drive toward a
wall and stop a specified distance away.

Open the Program

Let’s start by looking at the example sketch. Open the sketch by selecting
Examples > Activity_13. A new sketch window will open titled Activity_13
(Figure 61).

Figure 61

Parts Needed

112 Building and Coding the PULSE CodeeBot

Figure 62 Figure 63 Figure 64

Execute the Code

Before you can upload the sketch to the PULSE, remember to check your
connections. The Ultrasonic Sensor should be in D3. Upload the sketch. The green
LED will light up, indicating the code is ready to execute. When this has occurred,
disconnect the USB cable and set the Codee Bot on the floor.

The Codee Bot should be pointed toward an object or wall at least 25 cm away.
Press the green Start button to execute the sketch. Observe the behavior of the
robot. What happens if the Codee Bot or object is moved before the sketch is
ended?

Press the red Stop/Reset button to end the sketch. Based on the sketch comments,
did the behavior match expectations?

Further Investigate

This sketch uses an if-else block. An if-else block gives greater control over the flow
of code than the basic if block. It enables multiple tests to be grouped together so
they can be run at the same time. In other words, the if part of the block says if this
condition is true, do this. The else part of the block says if this condition is false, do
this instead.

In this sketch, the first part of the if-else block tests the condition of the Ultrasonic
Sensor, and if the sensor is more than 25 cm away from an object, it sets the power
for the motors at 50 percent. The second part of the if-else block uses the same test,
but if the sensor is less than 25 cm away from an object, it gives an alternate action
and tells the motors to brake.

On the if block, you can choose from different programming options. You can use
the basic if-do block, and then the program will do the action within the loop. In
this activity, you are using the if-do; else if-do block. Another option is the if-do,
else-do block. You have to click the blue gear icon to change the block type (Figures
62 and 63). Then you drag over the statement you plan to use underneath the if
block on the right side (Figure 64).

More than 25
centimeters

Box or obstacle

Troubleshooting: Be sure to
check that the Ultrasonic Sensor
is plugged into the correct sensor
port and is plugged in correctly.
Keep in mind that objects without
adequate surface size or that have
an irregular surface might not
be detected or might affect the
distance the sensor reads.

Building and Coding the PULSE CodeeBot 113

Extension Activity

With the example as a reference, try creating a new sketch to have the Codee Bot
drive toward a wall or object and stop. Remember what you have learned from your
previous activities. Challenge yourself by changing the direction, range, or speed.
You can also test what size and shape of object the Ultrasonic Sensor is more likely
to detect and at what range.

Real-World Link

Small vacuum robots that clean the floors of homes use sensors to detect if there
are obstacles in their path. If the little robot encounters a couch, it is programmed
to back up and turn to avoid the obstacle. It also has sensors to detect stairs so that
it stops and doesn’t fall down.

Careers: vacuum engineer, vacuum coater, mechanical drafter

STEM Connections

• Science

 Ĕ Speed of sound

 Ĕ Sound waves

• Technology

 Ĕ Sensor calibration

 Ĕ Ultrasonic

• Engineering

 Ĕ Obstacle detection

 Ĕ Braking

• Math

 Ĕ Distance from objects

 Ĕ Metric and standard units

114 Building and Coding the PULSE CodeeBot

Block-Text Correlation

void setup() {
pulse.PulseBegin();
pulse.setMotorInvert(1,1);

if (pulse.readSonicSensorCM(3) > 25) {

pulse.setMotorPowers(50,50);

} else if (pulse.readSonicSensorCM(3) < 25) {
pulse.setMotorPowers(0,0);

Arduino Source Code

#include <PULSE.h>
PULSE pulse;

void setup() {
pulse.PulseBegin();

pulse.setMotorInvert(1,1);
}

void loop() {
if (pulse.readSonicSensorCM(3) > 25) {
pulse.setMotorPowers(50,50);
} else if (pulse.readSonicSensorCM(3) < 25) {
pulse.setMotorPowers(0,0);
}

}

Note: The bot will drive forward until it encounters an
obstacle 25 cm away, and then it will brake.

Building and Coding the PULSE CodeeBot 115

Execute the Code

Before you can upload the sketch to the PULSE, remember to check your
connections. The Ultrasonic Sensor should be in D3. Upload the sketch. The green
LED will light up, indicating the code is ready to execute. When this has occurred,
disconnect the USB cable and set the Codee Bot on the floor.

When running this code, set an obstacle in front of your robot at a distance well
outside the 25-centimeter detection range. Cardboard boxes work well for this
purpose. You do not want anything too heavy that could cause damage to your
robot just in case your robot crashes into it.

Activity 14: Avoiding Obstacles
Introduction

For this activity, you are going to expand on the if-else block by adding actions. This
will enable the PULSE Codee Bot to avoid obstacles in its path.

Open the Program

Let’s start by looking at the example sketch. Open the sketch by selecting
Examples > Activity_14. A new sketch window will open titled Activity_14
(Figure 65).

Figure 65

Parts Needed

116 Building and Coding the PULSE CodeeBot

To begin, press the green Start button. Your robot will travel forward until it senses
that it is within 25 cm of the object in its path.

When an object is detected, the robot will stop, back up, make a right turn, and
continue. Observe the behavior of the robot. Press the red Stop/Reset button to end
the sketch. Based on the sketch comments, did the behavior match expectations?

Further Investigate

This sketch uses the if-else block and uses multiple actions within the loop.

Each part of the if-else block here has multiple actions. In the if part of the block,
the Codee Bot is moving forward at 35% power with the green LED on while the
sensor watches for an object. In the else part of the block, when the Codee Bot
detects an object, the green LED turns off and the red LED turns on, and the Codee
Bot stops, backs up, and turns right. The loop then continues.

Extension Activity

With the example as a reference, try creating a new sketch to have the Codee Bot
avoid obstacles. Remember what you learned from your previous activities.

Challenge yourself and experiment with different objects or make an obstacle
course with multiple objects to detect. You can experiment and modify the
example code as needed to change the reaction and behavior of your robot’s
obstacle avoidance.

Real-World Link

Some new vehicles have sensors in the front that sense if an object is in front of
them. Imagine a deer running out in front of the car you’re riding in. The car would
automatically brake because it sensed the deer in front of it. The car avoided an
accident that would have occurred because of the collision with a deer.

Careers: test engineer, materials development engineer, measurement lab
technician

STEM Connections

• Science

 Ĕ Sound waves

 Ĕ Echolocation

• Technology

 Ĕ Logic statements

 Ĕ Motor applications

• Engineering

 Ĕ Obstacle avoidance

 Ĕ Steering

• Math

 Ĕ Graphing

 Ĕ Angles

Troubleshooting: Be sure to
check that the Ultrasonic Sensor
is plugged into the correct sensor
port and is plugged in correctly.
Keep in mind that objects without
adequate surface size or that have
an irregular surface might not
be detected or might affect the
distance the sensor reads.

Tip: When the robot approaches
an obstacle at an angle, it might
have a challenge sensing the
object.

Building and Coding the PULSE CodeeBot 117

Block-Text Correlation

void setup() {
pulse.PulseBegin();
pulse.setMotorInvert(1,1);

if (pulse.readSonicSensorCM(3) > 25) {

} else {

Drive forward

Brake

Go backward

Brake

Turn
Arduino Source Code

#include <PULSE.h>
PULSE pulse;

void setup() {
pulse.PulseBegin();

pulse.setMotorInvert(1,1);
}

void loop() {
if (pulse.readSonicSensorCM(3) > 25) {
pulse.setMotorPowers(35,35);
pulse.setRedLED(LOW);
pulse.setGreenLED(HIGH);
} else {
pulse.setGreenLED(LOW);
pulse.setRedLED(HIGH);
pulse.setMotorPowers(0,0);
delay(500);
pulse.setMotorPowers(-35,-35);
delay(1000);
pulse.setMotorPowers(0,0);
delay(500);
pulse.setMotorPowers(35,-35);
delay(500);
}

}

118 Building and Coding the PULSE CodeeBot

Activity 15: Combining the Sensors
Introduction

This is a culmination of all the previous activities. The PULSE Codee Bot will follow a
line while watching for obstacles. If an obstacle is detected, then the Codee Bot will
stop, raise its beam arm, and wait for the obstacle to be moved before continuing.

Open the Program

Let’s start by looking at the example sketch. Open the sketch by selecting
Examples > Activity_15. A new sketch window will open titled Activity_15
(Figure 66).

Figure 66

Parts Needed

Building and Coding the PULSE CodeeBot 119

Sensor

Box or obstacle
More than 25
centimeters

Execute the Code

Before you can upload the sketch to the PULSE, remember to check your
connections. The Line Finder Sensor will be in D2, and the Ultrasonic Sensor will be
in D3.

You will use the Line Finder Sensor for line following and the Ultrasonic Sensor for
obstacle detection. This example sketch will have the robot follow the black line on
a white surface and look for an object in its path.

When the object is detected at a distance of less than 25 cm, the robot will stop
to avoid crashing into it. The robot will raise its beam and wait until the object is
cleared and then continue.

Upload the sketch. The green LED will light up, indicating the code is ready to
execute. When this has occurred, disconnect the USB cable and set the Codee Bot
on the floor.

The Codee Bot should be on a white or reflective surface with the Line Finder
Sensor slightly to the side of a line to follow.

When running this code, set an obstacle in front of your robot at a distance well
outside the 25-centimeter detection range. Cardboard boxes work well for this
purpose. You do not want anything too heavy that could cause damage to your
robot just in case your robot crashes into it.

Press the green Start button to execute the sketch. Observe the behavior of the
robot. You can also play around with moving your obstacles to see how your robot
reacts.

Press the red Stop/Reset button to end the sketch. Based on the sketch comments,
did the behavior match expectations?

Further Investigate

This sketch uses an if-else block and a while() loop block, which you have covered
before. This sketch is not about adding new elements. It is about combining the
elements from the previous activities.

The if-else block in this sketch does the same line-following behavior as in Activity
12 with two if blocks but in a more controlled way. The while() loop block monitors
the Ultrasonic Sensor and creates a behavior when an object is detected within 25
cm. This new behavior stops the Codee Bot and uses the servo to raise the Codee
Bot’s arm until the object is cleared from the Codee Bot’s path. When the object is
cleared, the Codee Bot will lower its arm and continue the original behavior of line
following.

Tip: If you’re struggling with your
sensors, look back at previous
activities for troubleshooting tips.

120 Building and Coding the PULSE CodeeBot

Extension Activity

With the example as a reference, try creating a new sketch to have the Codee Bot
follow a black line and stop for obstacles. Remember what you learned from your
previous activities.

Challenge yourself to create a sketch in which the Codee Bot follows a line to an
obstacle, goes around the obstacle, and continues following the line instead of
waiting for the obstacle to be cleared.

Real-World Link

Many different sensors are used in the medical field. Some examples include those
that determine your temperature, heart rate, breathing rate, and heartbeat pattern.
Some robots are even used to perform surgeries or take pictures of the inside of
your body.

Careers: surgical technologist, medical technician, biomedical engineer

STEM Connections

• Science

 Ĕ Senses

 Ĕ Functions

• Technology

 Ĕ Sensor readings

 Ĕ Course design

• Engineering

 Ĕ Problem solving

 Ĕ Sensory data integration

• Math

 Ĕ Data distribution

 Ĕ Duration

Building and Coding the PULSE CodeeBot 121

Block-Text Correlation

Drive forward

Brake

Go backward

Turn arm to 0 position

Turn arm to 90 position

Arduino Source Code

#include <PULSE.h>
PULSE pulse;

void setup() {
pulse.PulseBegin();

pulse.setMotorInvert(1,1);
pulse.setServoSpeed(1,50);
}

void loop() {
if (pulse.readLineSensor(2) == 1) {
pulse.setMotorPowers(30,0);
pulse.setRedLED(HIGH);
} else {
pulse.setMotorPowers(0,30);
pulse.setRedLED(LOW);
while (pulse.readSonicSensorCM(3) < 25) {
pulse.setGreenLED(HIGH);
pulse.setMotorPowers(0,0);
pulse.setServoPosition(1,0);
}
pulse.setGreenLED(LOW);
pulse.setServoPosition(1,90);
}

}

122 Building and Coding the PULSE CodeeBot

Build, Code, Test, Learn . . . Go!
You have built a robot, you have programmed PULSE, and you have tested and
tweaked your design, so where do you go from here?

This guide was intended to teach the essentials of building and coding a TETRIX
PRIME robot using the PULSE controller, TETRIX Ardublockly, and the Arduino
Software (IDE). However, this is only the beginning, and there are plenty of
additional resources available and opportunities to build larger robots that can
complete more complex tasks. Now that you have learned the basics, you are
limited only by your imagination. To help you get started, here are some favorite
resources.

Please be sure to check out the appendix of this guide, which includes a vast array
of additional resources.

Want more challenges?

Complete the activities contained within this guide through the text-based Arduino
Software (IDE). Re-create the block-based programs in actual text code. Make
modifications and attempt the extension activities using this code. This can vastly
extend the amount of time you can spend on this guide.

For more on the Arduino Software (IDE) and programming tips and tricks:

TETRIX PULSE is built on Arduino architecture and is thus usable with programming
languages that support Arduino. This enables PULSE users to access the Arduino
online community, which has produced a sea of support materials to get beginners
coding quickly. Learn more at www.arduino.cc.

For more on the TETRIX building system:

The parts and pieces used in this guide are only a portion of the elements available
in the TETRIX PRIME system. Visit Pitsco.com/TETRIX to learn more about the
additional structural, motion, and accessory components that can be added to your
collection; to view support videos; and to download resources.

Building and Coding the PULSE CodeeBot 123

Scope and Sequence
The scope and sequence contains estimated timelines for each activity based
on the students completing all sections. Students work at different paces, so the
time that each activity could take will vary. The time estimate also includes the
completion of all the extension activities. This scope and sequence does not include
time to complete the introduction section of the programming guide.

Total Time: 780 minutes (13 hours)

Lesson Time Frame

Introduction 60 minutes

Activity 1: Hello World! 20 minutes

Activity 2: Moving Your DC Motors 20 minutes

Activity 3: Moving Your Servo Motors 20 minutes

Activity 4: Using the Line Finder Sensor 30 minutes

Activity 5: Introduction to the Ultrasonic Sensor 30 minutes

Activity 6: Build the PULSE Codee Bot 60 minutes

Activity 7: Drive Forward 60 minutes

Activity 8: Drive in a Circle 60 minutes

Activity 9: Drive in a Square 60 minutes

Activity 10: Simplify the Square 60 minutes

Activity 11: Drive to a Line and Stop 60 minutes

Activity 12: Follow a Line 60 minutes

Activity 13: Drive Toward a Wall and Stop 60 minutes

Activity 14: Avoiding Obstacles 60 minutes

Activity 15: Combining the Sensors 60 minutes

124 Appendix

Standards Addressed
Common Core State Standards – English Language Arts/Literacy

Common Core State Standards – Mathematics

ITEEA Standards for Technological Literacy

Grade 6

• SL.6.1

 Ĕ SL.6.1.A

 Ĕ SL.6.1.B

 Ĕ SL.6.1.C

 Ĕ SL.6.1.D

• SL.6.4

• RST.6-8.3

• RST.6-8.4

Math Practice

• MP1

• MP2

Grades 6-8

• 1.F

• 1.G

• 1.H

• 2.M

• 2.N

• 2.O

• 2.V

• 3.D

• 3.E

• 3.F

Grade 7

• SL.7.1

 Ĕ SL.7.1.A

 Ĕ SL.7.1.B

 Ĕ SL.7.1.C

 Ĕ SL.7.1.D

• SL.7.4

• RST.6-8.5

• RST.6-8.6

• 4.D

• 7.D

• 7.E

• 8.E

• 9.H

• 10.H

• 12.H

• 12.I

• 12.J

• 12.K

Math Content

• 6.NS.C.5

Grade 8

• SL.8.1

 Ĕ SL.8.1.A

 Ĕ SL.8.1.B

 Ĕ SL.8.1.C

 Ĕ SL.8.1.D

• SL.8.4

• RST.6-8.10

• 14.G

• 15.G

• 16.G

• 16.H

• 17.H

• 18.F

• 18.G

• 18.I

• 19.F

Appendix 125

Glossary
abort: to stop a program or sketch from continuing to execute (on PULSE, press the red Stop/Reset button)

Arduino Software (IDE): open-source software used to program Arduino-based hardware, such as PULSE

autonomous: a robot whose actions occur by use of a microprocessor without human intervention

beam: a square aluminum part with a set pattern of holes used as a structural building component

behavior: the physical action(s) of a robot

called function: an instruction set that is performed from within the main program or sketch

code: programming instructions

comparison statement: code that compares the value of two variables

condition: code that uses both logic and comparison of values

dead reckoning: process of calculating position by estimating the direction and distance previously traveled

declaration: a statement providing a name for a given function, variable, or constant

delay: code that provides a time interval between statements or actions

differential drive: a drive system in which the speeds of the motors located on opposite sides of the robot control the
direction of travel

end effector: device on a robot that interacts with its environment

execute: to carry out an instruction or a program

expected behavior: the action of a robot based on how you think it will execute a set of instructions

for loop: a set of instructions that repeats a set number of times

function: a procedure within a computer program

HIGH: typically the “on” value of a switch or sensor

if/else: instruction statement that chooses between two paths based on value comparisons

if/then: instruction statement that provides an action based on a value comparison

increment: a specific amount of increase, typically used in code loops

initialize: to set a beginning value of a variable or the starting point of a code configuration

integer: a positive or negative whole number, including zero

LED: light-emitting diode

Line Finder Sensor: hardware that can detect contrast in light and dark surfaces to direct the path of a robot

logic: the science of formal principles of reasoning or correct inference; logic is governed by mathematical principles

LOW: typically the “off” value of a switch or sensor

main loop: also known as a void loop within C-based programming, this loop contains the instructional code for
controlling the robot

millisecond: one-one-thousandth of a second

neutral position: the center position of a servo motor

obstacle: a physical object that blocks the path of a robot

parameter: a factor or condition to meet within the final solution of a problem

pseudocode: descriptive steps (based on simple language) to be taken within a computer program

reflected light: the amount of light that travels from a source to an object and returns to the source

126 Appendix

sensor: an electronic device used to detect light, sound, motion, or energy and relay the information to a processor

servo: short for servo motor – a rotary actuator capable of providing precise control of angular position and speed; it
consists of a motor coupled with a sensor for position feedback

sketch: a set of instructions (a computer program) within the Arduino Software (IDE) platform

standard servo: a servo that can rotate to a known angular position (typically 0°-180°) through internal sensor feedback

statement: one line of code; an instruction to be executed

syntax: the precise way computer code is written to be understood by the computer or microprocessor

TETRIX Ardublockly: a plug-in interface that enables code to be written using graphic blocks rather than syntax-based
coding and displays the coding to assist you in troubleshooting and learning to code

Ultrasonic Sensor: hardware that uses sound waves to determine the distance of an object from the sensor

upload: to move a sketch or file to a computer or microprocessor

variable: a named data item that might have one or more values during the execution of a program

void setup: instruction that provides the initialization of a program

while loop: a set of instructions that continues to execute over and over based on a logic statement

Appendix 127

Getting Started Extension Activities

GS Activity 1 extension

GS Activity 2 extension

GS Activity 3 extension

128 Appendix

GS Activity 4 extension

GS Activity 5 extension

Appendix 129

Careers Complete Listing

• air traffic controller

• automotive software engineer

• biomedical engineer

• car designer

• CNC programmer

• digital sculptor

• electrical engineer

• electrical ride control technician

• electromechanical technician

• electronic engineer

• engineer

• fabricator

• farm equipment mechanic

• groundskeeper

• industrial engineer

• irrigation engineer

• locomotive engineer

• machine operator

• machinery maintenance worker

• machinist

• manufacturing engineer

• manufacturing technician

• mapping technician

• materials development engineer

• materials engineer

• measurement lab technician

• mechanical drafter

• mechanical engineer

• medical technician

• PLC programmer

• railroad conductor

• railroad worker

• roboticist

• small-engine mechanic

• software developer

• sonar technician

• sound engineering technician

• surgical technologist

• technical director

• test engineer

• theme park manager

• traffic light engineer

• traffic technician

• vacuum coater

• vacuum engineer

130 Appendix

TETRIX PULSE Robotics Controller Technical Specifications
Microcontroller: ATmega328P with Arduino Optiboot bootloader installed

Memory: 32 KB flash programmable memory (ATmega328P)

Power: 6 volts DC using TETRIX PRIME 6 V NiMH Battery Pack

DC motor ports: 2 three-position header pins; H-bridge PWM controlled;
3 A continuous current each channel, 5 A peak

Compatible DC
motor: TETRIX PRIME 6-Volt DC Motor (44298)

DC motor control
modes:

Constant power (-100% to 100%)
Support for PID constant speed (-100 to 100 degrees per
second)
Support for PID constant speed to encoder target position
and hold
Support for PID constant speed to encoder degree
position and hold

Motor encoder ports: 2 quadrature, 5 volts DC, 50 mA max; Spec: 360 CPR, 1,440
PPR; ENC 1 and ENC 2

USB connector: USB Type B

USB driver: FTDI

Standard servo
ports: 6 total: servo channels 1-6

Compatible servo
motor: Standard-Scale Servo Motor (40538)

Total servo power
limit: 6 volts DC, 6 A max

Servo control modes: Set servo speed (0% to 100%)
Set servo position (0-180 degrees)

Battery voltage
monitoring: 0-7.5 volts range

3 digital sensor ports
(D2-D4):

Each can be configured as digital input, digital output, or
serial communication.

3 analog sensor
ports (A1-A3):

Each can be configured as analog input or digital input or
output ports.

1 I2C port (I2C):
100 kHz speed. This connection shares the same I2C bus
as the internal DC motor and servo motor control chips.
I2C addresses 0x01-0x06 reserved by the PULSE controller.

Battery connection
port:

3-position pin header. Use only TETRIX PRIME 6 V NiMH
Battery Pack.

1 green Start button
(START): Programmable push button

1 red Stop/Reset
button (RESET): Non-programmable push button

1 red LED: Programmable LED used as an indicator

1 yellow LED: Programmable LED used as an indicator

1 green LED: Programmable LED used as an indicator

1 blue LED: Indicates the power is on when illuminated

2 yellow LEDs: Indicates serial data activity on the USB port

1 red and 1 green DC
motor LED:

Indicates DC motor rotation and direction for each DC
motor channel

Appendix 131

TETRIX PULSE Controller Sensor Port Pinout Diagrams
PULSE Sensor Ports

The PULSE controller uses Arduino UNO-compatible pin assignments. The sensors that are
supported in the PULSE Arduino Library are set up automatically using the library functions.
Support for different types of sensors will be added as they become available. However,
the ports are all directly accessible using Arduino coding functions if you wish to code with
additional sensors not yet supported in the PULSE library. With the exception of the I2C
port, all can be configured as inputs or outputs using the Arduino pinMode() function. To
learn more, visit the Language Reference section at https://www.arduino.cc/en/Reference/
HomePage.

Table 1: I2C Port Pin Assignments

Pin Function Arduino Software (IDE) pin assignment ()

Pin 1 Ground N/A

Pin 2 +5 volts, 100 mA N/A

Pin 3 SDA (I2C serial data) ADC4 input channel (A4) | digital I/O (18)

Pin 4 SCL (I2C serial clock) ADC5 input channel (A5) | digital I/O (19)

Table 2: Analog Sensor Port (A1)

Pin Function Arduino Software (IDE) pin assignment ()

Pin 1 Ground N/A

Pin 2 +5 volts, 100 mA N/A

Pin 3 No connect N/A

Pin 4 Analog input or digital input/output Analog input (A1) | digital I/O (15)

Table 3: Analog Sensor Port (A2)

Pin Function Arduino Software (IDE) pin assignment ()

Pin 1 Ground N/A

Pin 2 +5 volts, 100 mA N/A

Pin 3 No connect N/A

Pin 4 Analog input or digital input/output Analog input (A2) | digital I/O (16)

Table 4: Analog Sensor Port (A3)

Pin Function Arduino Software (IDE) pin assignment ()

Pin 1 Ground N/A

Pin 2 +5 volts, 100 mA N/A

Pin 3 No connect N/A

Pin 4 Analog input or digital input/output Analog input (A3) | digital I/O (17)

Figure 67: PULSE Sensor Port (Pins are left to right: 1, 2, 3, 4.)

Note: The PULSE I2C
port can be used only in
I2C mode. It cannot be
configured for analog or
digital mode.

Note: Analog sensor
ports A1-A3 can also
be configured as digital
input/output.

132 Appendix

Table 5: Digital Sensor Port (D2)

Pin Function Arduino Software (IDE) pin assignment ()

Pin 1 Ground N/A

Pin 2 +5 volts, 100 mA N/A

Pin 3 Digital input/output Digital I/O (9)

Pin 4 Digital input/output Digital I/O (2)

Table 6: Digital Sensor Port (D3)

Pin Function Arduino Software (IDE) pin assignment ()

Pin 1 Ground N/A

Pin 2 +5 volts, 100 mA N/A

Pin 3 Digital input/output Digital I/O (10)

Pin 4 Digital input/output Digital I/O (3)

Table 7: Digital Sensor Port (D4)

Pin Function Arduino Software (IDE) pin assignment ()

Pin 1 Ground N/A

Pin 2 +5 volts, 100 mA N/A

Pin 3 Digital input/output Digital I/O (11)

Pin 4 Digital input/output Digital I/O (4)

Note: Digital sensor
ports D2-D4 can also be
configured as software-
implemented serial
ports using the Arduino
Software (IDE) Serial
Library.

Appendix 133

TETRIX PULSE Arduino Library Functions Chart
Description Function Coding Example

PULSE Begin
Is called in the Arduino code setup()
loop. Initializes the PULSE controller.

PulseBegin();

Data Type: None

PulseBegin();
Reset and initialize PULSE controller.

PULSE End
When called, immediately terminates
a program and resets the PULSE
controller.

PulseEnd();

Data Type: None

PulseEnd();
Terminate a PULSE program and reset
controller.

Set Red LED
Sets the PULSE red indicator LED to on
or off.

setRedLED(state);

Data Type:
state = integer

Data Range:
state = 1 or 0
or
state = HIGH or LOW

setRedLED(HIGH);
or
setRedLED(1);
Turn red LED on.
setRedLED(LOW);
or
setRedLED(0);
Turn red LED off.

Set Yellow LED
Sets the PULSE yellow indicator LED to
on or off.

setYellowLED(state);

Data Type:
state = integer

Data Range:
state = 1 or 0
or
state = HIGH or LOW

setYellowLED(HIGH);
or
setYellowLED(1);
Turn red LED on.
setYellowLED(LOW);
or
setYellowLED(0);
Turn red LED off.

Set Green LED
Sets the PULSE green indicator LED to
on or off.

setGreenLED(state);

Data Type:
state = integer

Data Range:
state = 1 or 0
or
state = HIGH or LOW

setGreenLED(HIGH);
or
setGreenLED(1);
Turn green LED on.
setGreenLED(LOW);
or
setGreenLED(0);
Turn green LED off.

Set DC Motor Power
Sets the power level and direction of
a TETRIX DC Motor connected to the
PULSE DC motor ports. Power level
range is 0 to 100. Direction is set by
the sign (+/-) of the power level. Power
level 0 = stop motor.

setMotorPower(motor#, power);

Data Type:
motor# = integer
power = integer

Data Range:
motor# = 1 or 2
power = -100 to 100

setMotorPower(1, 50);
Spin Motor 1 clockwise at 50% power.
setMotorPower(2, -50%);
Spin Motor 2 counterclockwise at 50%
power.
setMotorPower(1, 0);
Turn off Motor 1.

Set DC Motor Powers
Simultaneously sets the power level
and direction of both TETRIX DC
Motors connected to the PULSE motor
ports. Both PULSE Motor 1 and Motor
2 channel parameters are set with
a single statement. The power level
range is 0 to 100. Direction is set by
the sign (+/-) of the power level. Power
level 0 = stop motor.

setMotorPowers(power1, power2);

Data Type:
power1 = integer
power2 = integer

Data Range:
power1 = -100 to 100
power2 = -100 to 100

setMotorPowers(50, 50);
Spin Motor 1 and Motor 2 clockwise at
50% power.
setMotorPowers(-50, 50);
Spin Motor 1 counterclockwise and
Motor 2 clockwise at 50% power.
setMotorPowers(0, 0);
Turn off Motor 1 and Motor 2.

134 Appendix

Description Function Coding Example

Set DC Motor Speed
Uses velocity PID control to set the
constant speed of a TETRIX DC Motor
with a TETRIX motor encoder installed.
The speed parameter range is 0 to 720
degrees per second (DPS). The sign
(+/-) of the speed parameter controls
direction of rotation.

setMotorSpeed(motor#, speed);

Data Type:
motor# = integer
speed = integer

Data Range:
motor# = 1 or 2
speed = -720 to 720

setMotorSpeed(1, 360);
Spin Motor 1 clockwise at a constant
speed of 360 DPS.
setMotorSpeed(1, -360);
Spin Motor 1 counterclockwise at a
constant speed of 360 DPS.

Set DC Motor Speeds
Uses velocity PID control to
simultaneously set the constant
speeds of both TETRIX DC Motor
channels with TETRIX motor encoders
installed. Both PULSE Motor 1 and
Motor 2 channel parameters are set
with a single statement. The speed
parameter range is 0 to 720 degrees
per second (DPS). The sign (+/-) of the
speed parameter controls direction
of rotation.

setMotorSpeeds(speed1, speed2);

Data Type:
speed1 = integer
speed2 = integer

Data Range:
speed1 = -720 to 720
speed2 = -720 to 720

setMotorSpeeds(360, 360);
Spin Motor 1 and Motor 2 clockwise at a
constant speed of 360 DPS.
setMotorSpeeds(360, -360);
Spin Motor 1 clockwise and Motor 2
counterclockwise at a constant speed of
360 DPS.
setMotorSpeeds(360, -180);
Spin Motor 1 clockwise and Motor 2
counterclockwise at a constant speed of
180 DPS.

Set DC Motor Targets
Implements velocity and positional
PID control to simultaneously set the
constant speeds and the encoder
count target holding positions of
both TETRIX DC Motor channels each
with TETRIX encoders installed. Both
PULSE Motor 1 and Motor 2 channel
parameters are set with a single
statement. The speed parameter
range is 0 to 720 degrees per second
(DPS). The encoder count target
position is a signed long integer
from -2,147,483,648 to 2,147,483,647.
Each encoder count = 1/4-degree
resolution.

setMotorTargets(speed1, target1,
speed2, target2);

Data Type:
speed1 = integer
target1 = long
speed2 = integer
target2 = long

Data Range:
speed1 = 0 to 720
target1 = -2147483648 to 2147483647
speed2 = 0 to 720
target2 = -2147483648 to 2147483647

setMotorTargets(360, 1440, 360,
1440);
Spin Motor 1 and Motor 2 at a constant
speed of 360 DPS until each motor
encoder count equals 1,440. When a
motor reaches its encoder target count,
hold position in a servo-like mode.
setMotorTargets(360, 1440, 180,
2880);
Spin Motor 1 at a constant speed of 360
DPS until encoder 1 count equals 1,440.
Spin Motor 2 at a constant speed of 180
DPS until encoder 2 equals 2,880. Each
motor will hold its position in a servo-
like mode when it reaches the encoder
target.

Note: One encoder count equals
1/4-degree resolution. For example, 1
motor revolution equals 1,440 encoder
counts (1,440 / 4 = 360).

Set Motor Degree
Implements velocity and positional
PID control to set the constant speed
and the degree target holding position
of a TETRIX DC Motor with a TETRIX
encoder installed. The speed parameter
range is 0 to 720 degrees per second
(DPS). The encoder degrees target
position is a signed long integer from
-536,870,912 to 536,870,911 with a
1-degree resolution.

setMotorDegree(motor#, speed,
degrees);

Data Type:
motor# = integer
speed = integer
degrees = long

Data Range:
motor# = 1 or 2
speed = 0 to 720
degrees = -536870912 to 536870911

setMotorDegree(1, 180, 360);
Spin Motor 1 at a constant speed of 180
DPS until encoder 1 degree count equals
360. When at encoder target degree
count, hold position in a servo-like mode.
setMotorDegree(2, 90, 180);
Spin Motor 2 at a constant speed of 90
DPS until encoder 2 degree 2 equals 180.
When at encoder target degree count,
hold position in a servo-like mode.

Appendix 135

Description Function Coding Example

Set Motor Degrees
Implements velocity and positional PID
control to set the constant speeds and
the degree target holding positions
of both TETRIX DC Motor channels
with TETRIX encoders installed. Both
PULSE Motor 1 and Motor 2 channel
parameters are set with a single
statement. The speed parameter range
is 0 to 720 degrees per second (DPS).
The encoder degree target position is a
signed long integer from -536,870,912
to 536,870,911 with a 1-degree
resolution.

setMotorDegrees(speed1, degrees1,
speed2, degrees2);

Data Type:
speed1 = integer
degrees1 = long
speed2 = integer
degrees2 = long

Data Range:
speed1 = 0 to 720
degrees1 = -536870912 to 536870911
speed2 = 0 to 720
degrees2 = -536870912 to 536870911

setMotorDegrees(180, 360, 180, 360);
Spin Motor 1 and Motor 2 at a constant
speed of 180 DPS until each motor
encoder degree count equals 360. When
a motor reaches its degree target count,
hold position in a servo-like mode.
setMotorDegrees(360, 720, 90, 360);
Spin Motor 1 at a constant speed of
360 DPS until encoder 1 degree count
equals 720. Spin Motor 2 at a constant
speed of 90 DPS until encoder 2 degree
count equals 360. Each motor will hold
its position in a servo-like mode when it
reaches the encoder target.

Set Motor Direction Invert
Inverts the forward/reverse direction
mapping of a DC motor channel. This
function is intended to harmonize
the forward and reverse directions
for motors on opposite sides of a
skid-steer robot chassis. Inverting
one motor channel can make coding
opposite-facing DC motors working
in tandem more intuitive. An invert
parameter of 1 = invert. An invert
parameter of 0 = no invert. The default
is no invert.

setMotorInvert(motor#, invert);

Data Type:
motor# = integer
invert = integer

Data Range:
motor# = 1 or 2
invert = 0 or 1

setMotorInvert(1, 1);
Invert the spin direction mapping of
Motor 1.
setMotorInvert(2, 1);
Invert the spin direction mapping of
Motor 2.
setMotorInvert(1, 0);
Do not invert the spin direction mapping
of Motor 1.
setMotorInvert(2, 0);
Do not invert the spin direction mapping
of Motor 2.

Note: Non-inverting is the default on
PULSE power-up or reset.

Read Motor Busy Status
Reads the busy flag to check on the
status of a DC motor that is operating
in positional PID mode. The motor
busy status will return “1” if it is moving
toward a positional target (degrees or
encoder count). When it has reached
its target and is in hold mode, the busy
status will return “0.”

readMotorBusy(motor#);

Data Type:
motor# = integer

Data Range:
motor# = 1 or 2

Data Type Returned:
value = integer (0 or 1)

readMotorBusy(1);
Return the busy status of Motor 1.
readMotorBusy(2);
Return the busy status of Motor 2.

136 Appendix

Description Function Coding Example

Read Encoder Count
Reads the encoder count value. The
PULSE controller uses encoder pulse
data to implement PID control of a
TETRIX DC Motor connected to the
motor ports. The PULSE controller
counts the number of pulses produced
over a set time period to accurately
control velocity and position. Each 1/4
degree equals one pulse, or count, or
1 degree of rotation equals 4 encoder
counts. The current count can be
read to determine a motor’s shaft
position. The total count accumulation
can range from -2,147,483,648 to
2,147,483,647. A clockwise rotation
adds to the count value, while a
counterclockwise rotation subtracts
from the count value. The encoder
values are set to 0 at power-up and
reset.

readEncoderCount(enc#);

Data Type:
enc# = integer

Data Range:
enc# = 1 or 2

Data Type Returned:
value = long

readEncoderCount(1);
Read the current count value of encoder
1 (ENC 1 port).
readEncoderCount(2);
Read the current count value of encoder
2 (ENC 2 port).

Read Encoder Degrees
Reads the encoder degree value. The
PULSE controller uses encoder pulse
data to implement PID control of a
TETRIX DC Motor connected to the
motor ports. The PULSE controller
counts the number of pulses produced
over a set time period to accurately
control velocity and position. This
function is similar to the encoder count
function, but instead of returning the
raw encoder count value, it returns
the motor shaft position in degrees.
The total degree count accumulation
can range from -536,870,912 to
536,870,911. A clockwise rotation
adds to the count value, while a
counterclockwise rotation subtracts
from the count value. The encoder
values are set to 0 at power-up and
reset.

readEncoderDegrees(enc#);

Data Type:
enc# = integer

Data Range:
enc# = 1 or 2

Data Type Returned:
value = long

readEncoderDegrees(1);
Read the current degree count value of
encoder 1 (ENC 1 port).
readEncoderDegrees(2);
Read the current degree count value of
encoder 2 (ENC 2 port).

Reset Each Encoder
Resets the encoder count accumulator
to 0.

resetEncoder(enc#);

Data Type:
enc# = integer

Data Range:
enc# = 1 or 2

resetEncoder(1);
Reset the encoder 1 count to 0.
resetEncoder(2);
Reset the encoder 2 count to 0.

Reset Both Encoders (1 and 2)
Resets encoder 1 and encoder 2 count
accumulators to 0.

resetEncoders();

Data Type: None

resetEncoders();
Reset the encoder 1 count to 0 and
encoder 2 count to 0.

Appendix 137

Description Function Coding Example

Read Line Sensor Output
Reads the digital output of the Line
Finder Sensor connected to a PULSE
sensor port. The value read is “0” when
reflected light is received (detecting
a light-colored surface) and “1” when
light is not received (detecting a dark-
colored surface, such as a line).

readLineSensor(port#);

Data Type:
port# = integer

Data Range:
port# (See note in adjacent column.)

Data Type Returned:
value = integer (0 or 1)

readLineSensor(2);
Read the digital value of a Line Finder
Sensor on digital sensor port D2.

Note: The Line Finder Sensor can be
connected to any digital port D2-D4, or
analog ports A1-A3 configured as digital
input.

Read Ultrasonic Sensor in
Centimeters
Reads the distance in centimeters of an
object placed in front of the Ultrasonic
Sensor. The sensor is modulated at
42 kHz and has a range of 3 to 400
centimeters. The value read is an
integer.

readSonicSensorCM(port#);

Data Type:
port# = integer

Data Range:
port# (See note in adjacent column.)

Data Type Returned:
value = integer (3 to 400)
Min and max might slightly vary.

readSonicSensorCM(3);
Read the distance in centimeters of an
object placed in front of the Ultrasonic
Sensor connected to digital sensor port
D3.

Note: The Ultrasonic Sensor can be
connected to any digital port D2-D4, or
analog ports A1-A3 configured as digital
input.

Read Ultrasonic Sensor in Inches
Reads the distance in inches of an
object placed in front of the Ultrasonic
Sensor. The sensor is modulated at 42
kHz and has a range of 2 to 150 inches.
The value read is an integer.

readSonicSensorIN(port#);

Data Type:
port# = integer

Data Range:
port# (See note in adjacent column.)

Data Type Returned:
value = integer (2 to 150)
Min and max might slightly vary.

readSonicSensorIN(4);
Read the distance in inches of an object
placed in front of the Ultrasonic Sensor
connected to digital sensor port D4.

Note: The Ultrasonic Sensor can be
connected to any digital port D2-D4, or
analog ports A1-A3.

Read Battery Pack Voltage
Reads the voltage of the TETRIX
battery pack powering the PULSE
controller. The value read is an integer.

readBatteryVoltage();

Data Type: None

Data Type Returned:
value = integer

readBatteryVoltage();
Read the voltage of the TETRIX battery
pack powering the PULSE controller.

Example: A value of 918 equals 9.18
volts.

Read Start Button State
Reads the state of the green PULSE
Start button. A returned value of “1”
indicates a pressed state. A returned
value of “0” indicates a not-pressed
state.

readStartButton();

Data Type: None

Data Type Returned:
value = integer (0 or 1)

readStartButton();
Read the Start button. A value of 1
means button is pressed. A value of 0
means button is not pressed.

138 Appendix

Description Function Coding Example

Set Speed of a Servo Motor
Sets the speed of a servo motor
connected to a PULSE servo port 1-6.
The speed parameter can be 0 to 100%.
The servo motor channel parameter
can be any number 1 to 6. If not
specified, the speed of a servo defaults
to 100 (maximum speed). When a
servo speed has been set, it will always
move at the set speed until changed.
Unless we are changing speeds, it will
need to be called only once at the
beginning of a program.

setServoSpeed(servo#, speed);

Data Type:
servo# = integer
speed = integer

Data Range:
servo# = 1 to 6
speed = 0 to 100

setServoSpeed(1, 25);
Set the speed of servo channel 1 to 25%.
setServoSpeed(2, 50);
Set the speed of servo channel 2 to 50%.

Set Speeds of All Servo Motors
Sets the speeds of all six servo
channels simultaneously with a
single command. All six speeds are in
sequential order and can be 0 to 100%.
All six servo speeds may be the same
or different.

setServoSpeeds(speed1, speed2,
speed3, speed4, speed5, speed6);

Data Type:
speed1-speed6 = integer

Data Range:
speed1-speed6 = 0 to 100

setServoSpeeds(25, 25, 25, 25, 25, 25);
Set the speeds of all six servo channels
to 25%.
setServoSpeeds(25, 35, 45, 55, 65, 75);
Servo 1 speed = 25%
Servo 2 speed = 35%
Servo 3 speed = 45%
Servo 4 speed = 55%
Servo 5 speed = 65%
Servo 6 speed = 75%

Set Position of a Servo Motor
Sets the angular position of a servo
motor connected to a PULSE servo
motor port 1-6. The position parameter
can be any value between 0 and
180 degrees. Any value outside this
range is ignored. Not all servos are the
same, so be careful when operating
a servo motor at the extreme ranges.
Listen closely; if a servo is buzzing, it is
pressing against its mechanical stop,
which might damage the motor. If
this happens, limit the range to values
slightly greater than 0 and slightly less
than 180 to avoid damage to the servo
motor.

setServoPosition(servo#, position);

Data Type:
servo# = integer
position = integer

Data Range:
servo# = 1 to 6
position = 0 to 180

setServoPosition(1, 90);
Set the angular position of Servo Motor 1
to 90 degrees.
setServoPosition(2, 130);
Set the angular position of Servo Motor 2
to 130 degrees.

Set Positions of All Servo Motors
Sets the angular positions of all
six servo motors connected to the
PULSE servo motor ports 1-6. The
position parameter can be any value
between 0 and 180 degrees. Any value
outside this range is ignored. Not all
servos are the same, so be careful
when operating a servo motor at the
extreme ranges. Listen closely; if a
servo is buzzing, it is pressing against
its mechanical stop, which might
damage the motor. If this happens,
limit the range to values slightly
greater than 0 and slightly less than
180 to avoid damage to the servo
motor.

setServoPositions(position1,
position2, position3, position4,
position5, position6);

Data Type:
position1-position6 = integer

Data Range:
position1-position6 = 0 to 180

setServoPositions(90, 90, 90, 90, 90,
90);
Set the angular positions of all six servo
motors connected to PULSE servo ports
1-6 to 90 degrees.
setServoPositions(10, 20, 30, 40, 50,
60);
Set the angular positions of all six servo
motors connected to PULSE servo ports
1-6.
Servo 1 position = 10 degrees
Servo 2 position = 20 degrees
Servo 3 position = 30 degrees
Servo 4 position = 40 degrees
Servo 5 position = 50 degrees
Servo 6 position = 60 degrees

Appendix 139

Description Function Coding Example

Read a Servo Position
Reads the most recent commanded
position of a servo motor connected
to PULSE servo ports 1-6. The value
returned will be 0-180.

readServoPosition(servo#);

Data Type:
servo# = integer

Data Range:
servo# = 1 to 6

Data Type Returned:
value = integer (0 to 180)

readServoPosition(1);
Read the most recent commanded
position of Servo 1.
readServoPosition(2);
Read the most recent commanded
position of Servo 2.

140 Appendix

TETRIX PULSE Arduino Library Functions Cheat Sheet
Below is a reference of each function statement in the TETRIX PULSE Robotics
Controller Arduino Library.

PulseBegin();

PulseEnd();

setRedLED(HIGH/LOW);

setYellowLED(HIGH/LOW);

setGreenLED(HIGH/LOW);

setMotorPower(motor#, power);

setMotorPowers(power1, power2);

setMotorSpeed(motor#, speed);

setMotorSpeeds(speed1, speed2);

setMotorTarget(motor#, speed, target);

setMotorTargets(speed1, target1, speed2, target2);

setMotorDegree(motor#, speed, degrees);

setMotorDegrees(speed1, degrees1, speed2, degrees2);

setMotorInvert(motor#, invert);

readMotorBusy(motor#);

readEncoderCount(enc#);

readEncoderDegrees(enc#);

resetEncoder(enc#);

resetEncoders();

readLineSensor(port#);

readSonicSensorCM(port#);

readSonicSensorIN(port#);

readBatteryVoltage();

readStartButton();

setServoSpeed(servo#, speed);

setServoSpeeds(speed1, speed2, speed3, speed4, speed5, speed6);

setServoPosition(servo#, position);

setServoPositions(position1, position2, position3, position4, position5, position6);

readServoPosition(servo#);

Appendix 141

Detail

TETRIX PULSE Controller
Wiring Diagram

142 TETRIX PULSE Controller Wiring Diagram

Call Toll-Free
800•835•0686

Visit Us Online at
Pitsco.com

TETRIX® PULSE™ Robotics Controller
Programming Guide

	44301_PULSE_Programming_Guide__COVER
	44301_PULSE_Programming_Guide__GUTS

